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ABSTRACT :  

The term free boundary problem (FBP) refers to a 
problem in the modern applied mathematical literature in 
which one or several variables must be fixed in different 
domains of space or space-time, for which each variable is 
controlled in its domain,by a set of state laws. If the domains 
are known, this problem usually reduces to solving ordinary 
differential equations (ODEs) or partial differential 
equations (PDEs). Now, the novelty of the FBP is the fact 
that the domain is a priority unknown and has to be 
determined as part of the problem, thanks to many physical boundary laws or many open boundary 
conditions caused by the phase constraints. The interplay of state laws for single phase and special phase 
transition situations allows mathematical modeling based on physics and engineering to combine 
mathematical analysis and geometry in sophisticated ways. Let us show the basic section of a set of open 
boundary problems: In the process of evolving over time, the main difficulty of theory is to track free 
boundary or boundary movements; moving these problems is also called free boundary problem. In cases 
where time does not appear, the common name is FBP. Another fundamental difference is the difference 
between many-phase problems and simple one-step problems, where the open boundary is the bounding 
hypersurface of the equation driven phase. The one-stage problem with a vacuum is usually considered to 
be a two-step problem, usually in the second phase of a minor. 
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INTRODUCTION  

Different equations have always had a strong relation to the real world and are often generated 
in mathematical models of physical systems. Famous examples are Newton's second law of motion, 
Maxwell's equation in electrodynamics, and the Schrodinger equation in quantum physics. 

Such equations are often specified in a given domain, but sometimes the domain is not 
preferred. This is the difference between the classical partial differential equations and the problem 
with open borders. In other words, a different equation is traditionally stated in the fixed domain sayΩ, 
satisfy the equation if there is some unknown function like µ. This should be compared to the free 
boundary problem where both domain Ωand the function µare unknown. The term "free" means that 
the domain boundary δΩof the domain Ω is not predefined. 
 
Solution of Viscosity and PDE’s Elliptic: 

Let’s start with some of the suggestions used in the first part. A common second order will be 
written as a partial differential equation… 
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F(D2µ(χ), Dµ(χ), µ(χ), (χ) = f (χ), χ € D 1.1 
 
Here, D is a non-empty domain in Rn, n ≥ 1, which is assumed to have asmooth boundary ∂D. A 

point x ∈ Rnis also denoted (x1, x2, . . . ,xn). The function F maps S×Rn×R to R, where S is the space of 
symmetric matricesin Rn×n. The symbols Dµ and D2µ denote the gradient and Hessian of thefunction u 
respectively, and f is a function defined on D. We will onlyconsider elliptic equations, which means that 
F satisfies 

The most famous example is the Laplace equation, that is, 1 when F is the sum of all pure second 
derivatives also denoted by ∆. If f = 0, (1.1) decreased by 

 
∆ µ(χ) = 0,    χ € D   1.2 
 
Examples of non-linear equations and those that cannot be treated by linear or even semi-linear 

theory are the Hamilton Jacobi-Bellman equation for optimal switching problems and the equation of 
Isaac rising in the theory of the game… 

 

supఈఢ ൬∑ ܽ
ఈ

,ୀଵ (ݔ) ఋమఓ
ఋ௫ఋ௫ೕ

(ݔ) = ൰(ݔ) ݂ =  1.3  (ݔ) ݂

supఈఢ inf
ఉ€ఉ 

ቆ∑ ܽ
ఈఉ

,ୀଵ (ݔ) ఋమఓ
ఋ௫ఋ௫ೕ

ቇ(ݔ) =  1.4   (ݔ) ݂

 
In above example A and B are set of index, and ܽ

ఈ , ܽ
ఈఉ  are the definite of positive metrics, 

generally the solution of µ in function 1.1 Our task is to ensure that equality is always against the 
pointits called the classical solution function. For example ݔଵ 

ଶ  and ݁௫ଵ  are the classical solution of 
function 1.2 It is always enough to be constantly different in many ways, and they are also analysts in D. 

If we exchange the right hand side function 1.2 with the function f which is not identical as zero. 
 
∆µ(x) = f (x),   x € D       1.5 
 
So to be clear, unless f is more regular then we are obviously not analysts. Because of the 

regularity of the sum of the pure second derivatives, you might expect that there are "two more 
derivatives than F". Perhaps the surprising fact is that this is not true in the following example. 
 
PROBLEM OF BOUNDARY: 

Imagine that you have a ring of radius R in three dimensions and a flexible screen is attached to 
that ring. Then the screen will reduce your total potential energy by getting the least possible area, 
assuming that gravity has a negligible effect. Choosing the coordinate system where the ring is located 
in the x1x2-plane, the size of the screen can be represented by the graph of the function µ (x1x2).  

 
∫ඥ1 +  ,ଶݔଵ݀ݔଶ݀|ݑ∇|
 
With the radius R, D is the disk, you will reduce the area under the limitݑ(݀ݔଵ݀ݔଶ) = 0 on the 

ring, It is clear that there is a solutionݑ(݀ݔଵ݀ݔଶ) = 0, Suppose there is now a barrier inside the ring that 
will allow the screen to become flat. Then it will look different but still minimize its area. To make 
things easier, we extend the teller to the first order,ඥ1 + ଶ ≈ 1 + |∇௨|మ|ݑ∇|

ଶ
, due to which we can consider 

to minimizing the problem, 
 
∫ ቀ1 +  |∇௨|మ

ଶ
ቁ  ,ଶݔଵ݀ݔ݀
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which is corresponding to minimizing 
 

∫|∇ݑ|ଶ݀ݔଵ݀ݔଶ 
 
If impediment is represented by ψ, we can find minimizers in the set{µ € ܹ

ଵ,ଶ(ܦ): ݑ ≥  ߰}, here 
the space ܹ

,(ܦ)Sobolev is a subset function in space 
 

ܹ,(ܦ) ≔ ݒ} =  න


ݔ݀|(ݔ)ݒఈܦ| <  ∞, | ∝ | ≤  ݇} 

 
Like that Dαμ = 0, on δD for all |α| ≤k – 1, now it is useful to distinguish where the set 

isݑ = ݑ ݀݊ܽ ߰  >  ߰ we can call the set of Ω:= {ݔ ∈ ܦ ∶ (ݔ)ݑ >  :the non-coincidence set, while Λ {(ݔ) ߰ 
∋ ݔ}= ܦ ∶ (ݔ)ݑ =  is coincidence set, the free boundary is Ґ := δΩ∩D. The word "free" comes {(ݔ) ߰ 
from the fact that Ґis not pre-determined. Since the solution is locally reducing energy, we can conclude 
that ∆μ = 0 in Ω. To having compatibility, we must have μ = ߰ and ∇μ = ∇ ߰ on Ґ. 

The open boundary consists of a circle in the one-dimensional case and a circle in the two-
dimensional case. If D is the n-dimensional ball of radius two, then the free boundary is a round with a 
radius of magnitude. It can already be seen in a two-dimensional case thatu’’ you are unpleasant, as it 
jumps between zero and minus two at the free border point. It is true that you are constantly on the 
Lipsitzu’, which in general may be the best hope, even if the obstacle is smooth, and Laplacian suggests 
an otherwise smooth solution with a smooth border. So the regularity of your containing solutions u is 
C1,1.The free boundary in the example is locally parsed because it is a hyper-sphere, but can usually 
display coups. 

If we redefine u to be u-ψ, we see that ∆μ = 0 at coincidence set also ∆μ = -∆ψ at the non-
coincidence set. Supposing -∆ψ = 1 and the following is a brief way to write the problem of constraint, 
regardless of boundary values, 

 
∆µ = X{u>0}, u ≥ 0 
 
 HereXΩ is the characteristic function, also called the indicator function, defined as 
 

ܺΩ(ݔ) ൜ 1, Ω€ݔ
0, €ݔ ⁄ Ω

� 

 
and{ݑ > 0} is shorthand for {ܦ€ݔ ∶ (ݔ)ݑ > 0}. From this suggestive notation, it is easy to change 

the problem in different ways. For example, an operator ∆ can replace the heat operator ∆µ-δt, or a 
simple linear second vertical ellipse with a smooth coefficient, 

 
L= ∑ ܽ,(ݔ) ఋమ

ఋ௫ఋ௫ೕ
+ ∑ ܾ


ୀଵ (ݔ) ఋ

ఋ௫


,ୀଵ +  (ݔ)ܿ

 
We can also change the right hand side and we can remove this condition as well ݑ ≤ 0. With 

the replacement of Replacement of ߯{௨வ}which will be ߯{|௨|வ}cause problems with superconductivity 
or ߯{௨ஷ}, Arising from probable theory, there is no sign barrier problem. In all instances, however, the 
question of the regularity of the solutions and the open borders is addressed. The optimal regularity of 
u, that is, C1,1 (C1 in x and C0,1 in the parabolic case) can be proved in all the above mentioned problems, 
and is also one of the main results in Paper A and Paper B. Solve a completely non-linear free boundary 
problem. 

Nevertheless, there are some problems for which the solution is not C1, the solution to the 
unstable obstacle problem, is given by 
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∆u = -χ{u>0} 

 

It is generally difficult to prove statements regarding the regularity of the free boundary, and 
one assumption (which is unfortunately difficult to investigate) is that the blown boundary is of the 
maximum of C maximum (݁. ,ݔ 0)ଶfor some continuous c and the direction e. The one limitation here is 
the limitation of the form… 

 

lim→ஶ ൬
௨ (ೕ௫ା௫బ

ೕమ ൰ ,  ,→ 0ݎ

 
Another interesting question is how the open border interacts to a certain extent. In the 

problem of classical and non-signaling constraints, the free border touches a fixed boundary of tangent, 
 
CONCLUSION: 

The semi-humid state of what we call balanced semi-humidity, see the paper for an explanation. 
We also introduce the idea of super-sub solutions and sub-super solutions. Unfortunately, it was 
discovered long after writing this article that a straightforward variable conversion to a quasi-
monotone system could be reduced. 
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