REVIEW OF RESEARCH

ISSN: 2249-894X IMPACT FACTOR : 5.7631 (UIF) UGC APPROVED JOURNAL NO. 48514 VOLUME - 8 | ISSUE - 8 | MAY - 2019

KEYWORDS: Heats of formation, electronegativity, Pnictides, sesquioxides.

INTRODUCTION:

During last two decades there has been a substantial interest in the development and discovery of new energetic compounds which include high explosives and propellants and a new term has assigned to these materials known as high energy density materials (HEDMs) [S. Michael et.al. 2016, Konings Rudy JM et al. 2008, Petit L., et al 2016. Grosse Frank, et al 2010]. This class of *HEDMs* categorically include compounds that have detonation pressure greater than or equal to 40.0 GPa, detonation velocities greater than or equal to 9.0 Km/s and densities greater than or equal to 1.9 gm/cm³. The term has become of greater importance because of increasing environmental concern, call for more effective ways of

predicting performance of *HEDMs* is required. The main interest of this research paper is to evolve a more general and relatively rapid method for the prediction / calculation of heats of formation values more accurately and close to the experimental data.

EMPIRICAL SIMULATION FOR HEATS OF

Associate Professor, Department of Physics,

Shivraj Bhardwaj

Agra.

ABSTRACT:

reported so far.

FORMATION TRENDS IN RARE EARTH COMPOUNDS

B.S.A. College Mathura, Dr. B.R. Ambedkar University

In this paper we have evolved an empirical simulation

method for the heats of formation determination for a variety of rare earth Pnictides and sesquioxides. The method proposed

for the heats of formation studies is quite simple and applicable for a large number of compounds. The results

obtained by applying this simulation method, it is found that

there is a very close agreement with the experimental data

COMPUTATIONAL METHOD

There has been several theoretical / experimental efforts in order to evaluate heats of formation values for different type of materials. It is one of the several important parameter used to assess the performance of energetic materials [Eyring Le Roy et al. 2002, Dere A, 2018, Springer 2001]. In practice most theoretical approaches gas-phase calculate heat of formation values. Solid or liquid phase values are then calculated by subtracting heat of sublimation or vaporization heat of values, respectively, from the gas-phase value. Heats of formation is an

important thermo dynamical property of the materials and several researchers [William G. 1978, Rezukhina T.N., 1974, James A., 1977, Sappegin A.M., 1987] have discussed about it in terms electro-negativity of difference of the atoms constituting the system. According to Pauling [Pauling L. 1960] the following relation gives the energy of bond formation between atoms A and B.

$$D = \frac{1}{2} \left[D(A - A) + D(B - B) + \frac{23}{X} (X - X) \right]$$
(1.1)

Where D(A - B), D(A - A) and D(B - B) are the energies of heteropolar bond A - B

and homopolar bond A-A and B-B respectively. X_A and X_B are electro-negativities of

atoms A and B.

The second term on the right hand side of the equation (1.1) gives the value of standard heats of formation as given below :

$$\Delta H = 23 \sum (X_A - X_B)^2 \tag{1.2}$$

Where $\sum_{i,j}$ is taken over all the bonds in the compound. Phillips [Phillips J.C. 1983, Phillips

J.C. 1984] investigated the heats of formation of few compound semi-conductors and proposed modified relation given as under -

$$\Delta H = 2/3 \times 23 \quad (X - X)^2 \tag{1.3}$$

According to Pauling the following relation gives the fractional ionic character or ionicity of a heteropolar bond between the atoms A and B.

$$f_{i=1-\exp\left[-\frac{(X_{i}-X_{j})^{2}}{4}\right]}$$
(1.4)

Adolf M. Mulokozi [Mulokozi A.M., 1980] has studied the heats of formation of rare earth compounds and proposed a relation for heats of formation in terms of inter atomic

distance d_{p-r} . According to him, the following relation may express the heats of formation,

$$-\Delta H_f = Ae(\Delta X) / dR - x + C$$
(1.5)

In a series of rare earth compounds (Where X does not vary) the partial charge ΔX

will be constant (depending upon the electro negativity difference between the atoms R and X), e and A elementary charge, which are Constants. Where C is covalent contribution.

According to Adolf M. Mulokozi the value of $\frac{2}{Ae(\Delta X)}^2$ and C depends upon cation.

We have drawn curves between heats of formation and lattice parameter, where from it is observed that the heats of formation trends in rare earth compounds increases with decreasing values of lattice parameter. In the view of above discussion and the trends observed in the curves plotted $-\Delta X_{1}/s_{2} l/a$, it is quite obvious that the heats of formation of a material is inversely related

to lattice parameter. Thus the relation (1.5) can be modified in the following form,

$$-\Delta H_r = C / a \tag{1.6}$$

Where C is an adjustable parameter. The value of C used in relation (1.6) are presented in following table 1.1 which are evaluated from the curves drawn between heats of formation and lattice constant of rare earth pnictides and sesquioxides.

The proposed modified empirical relation has been applied to evaluate heats of formation values for rare earth pnictides (N, P, As, Sb) and rare-earth sesquioxides (RE2O3). The values so obtained are presented in the following table 1.3 and 1.4 and compared with the experimental & theoretical data reported so far. Table 5.3

Compound	(0)	$-\Delta H_f$ ref.	$-\Delta H_{f}$ ref.	$-\Delta H_f$ this
	a [A]	[Hanks R. 1969]	[Zhuze V.P. 1989]	work
Lan	5.305*	71.07 4	72.0 ⁸	71.07
		a		
PEN	5.165 g	73.00 _a	NA	73.00
NdN	5.1514	73.20 4	73.0 ⁸	73.20
SmN	5.048 e	74.69 _a	NA	74.68
Gen	4.999 a	75.42 _a	NA	75.42
DyN	4.905 e	76.87 <u>a</u>	NA	76.86
HeN	4.874 a	77.36a	NA	77.35
EN	4.839 a	77.92 ₄	NA	77.91
TmN	4.809ª	78.40 ⁴	NA	78.40
YEN	4.785 2	78.79 _a	NA	78.79
		a		
LaP	6.025,	NA	72.2 ⁶	71.90
C-37	5.942 f	NA	NA	72.87
સ્ત	5.905 j	NA	NA	73.33
NGP	5.863 j	NA	NA	73.85
SmP	5.780 ^{,f}	NA	NA	74.91
GdP	5.723 ^k	NA	NA	75.66

Heats of formation of rare earth pnictides

_

To P	5.685 '	NA	NA	76.17
HoP	5.627 ^f	NA	NA	76.95
Dy P	5.643	NA	NA	76.73
ErP	5.599 (NA	NA	77.34
TmP	5.572 (NA	NA	77.71
Yb P	5.550 ^{,f}	NA	NA	78.02
LaA s	6.158 -	64.2	73.0	69.99
CeAs	6.076 -	68.4	68.9	70.94
PrA s	6.02.6 "	70.4	73.4	71.52
Nd A s	5.987 ో	71.6	72.7	71.99
SmA s	5.914 °	73.6	72.0	72.88
Gd A s	5.863	75.0	74.4	73.51
TbAs	5.821	76.2	75.0	74.04
Dy A s	5.793	75.4	78.1	74.40
Ho A s	5.766 *	75.5	72.2	74.75
ErAs	5.741	75.7	75.6	75.10
TmA s	5.716 *	75.8	72.8	75.40
Yb A s	5.690 °	NA	NA	75.75
LuAs	5.679 *	76.0	75.2	75.89
LaSb	6.448 ^g	NA	52.0+	53.04
CeSb	6.412 ^g	NA	NA	53.34
PrSb	6.366 ⁸	NA	NA	53.72
NdSb	6.322 ^g	NA	58.8 ⁸	54.10

6.217 ^k	NA	NA	55.01
6.170 b	NA	NA	55.42
6.140 j	NA	NA	55.70
6.120 b	NA	NA	55.88
6.080 b	NA	NA	56.25
6.067 5	NA	NA	56.37
	6.217 ^k 6.170 5 6.140 5 6.120 5 6.050 5 6.050 5	6.217 ^k NA 6.170 p NA 6.140 p NA 6.120 p NA 6.080 p NA 6.080 p NA	6.217 ^k NA NA 6.170 5 NA NA 6.170 5 NA NA 6.120 5 NA NA 6.120 5 NA NA 6.030 5 NA NA 6.030 5 NA NA 6.047 5 NA NA

- - - - - -

		Table 5.3		
Heats of formation of rare earth pnictides				
Compound		- <u>AH.</u> ref. [Hanks R. 1969]	- AH. ref. [Zhuze V.P. 1989]	–∆H1 this work
La ₂ O ₃	11.362	427.1	428.57±0.19	418.06
Ce: 0;	11.163	NA	435.00 ±6.00	425.51
Pr: O:	11.159	NA	436.80 ±1.60	425.66
Nd 2 O3	11.078	428.5	432.15±0.24	428.78
$Sm_2 O_3$	10.934	432.2	433.89±0.48	434.43
Eu : 0;	10.867	NA	NA	437.10
Gd 0 2 3	10.818	430.9	433.94±0.86	439.08
Tb O 2 3	10.728	NA	436.80±2.00	442.77
Dy O 2 3	10.667	443.1	445.84±0.93	445.30
Ho O	10.606	447.2	449.55±1.15	447.86
Er 0 2 3	10.550	451.6	453.59±0.49	450.24
Tm O 2 3	10.487	448.6	451.40±1.40	452.94
Yb O 2 3	10.434	432.0	433.68±0.53	455.24
Lu 2 O3	10.394	447.3	452.80±3.30	456.99

Table 5.3
Heats of formation of rare earth pnictides

CONCLUSION

Heats of formation values of a variety of rare earth pnicitides and sesquioxides have been evaluated by using a very simple and generalised relation which depends only on the lattice constant and an adjustable constant C depending upon the crystal structure of the compounds. From the table it is obvious that the values evaluated by the proposed empirical simulation method are in close agreement with the reported experimental data which proves the validity of the approach adopted for the heats of formation determination of a large number of rare earth compounds.

REFERENCES

Dere A, (2018)Quaternary chalcogenides Physics B : Condensed matter 545, 30-33

Frank Grosse, et al (2010) Rare Earth oxide alloys and staked layers : Al Ab initio sheet thin solid films 518 (16) 4747 - 4749.

Hanks R. (1969) and M.M. Fakter, J. Inorg. Nucl. Chem., 31.

- James A., (1977) Sommers and F. Edgar, Jr. Westrom, J. Chem. Thermodynamics, 9, 1. Michael S. et.al. (2016) Calculating heat of formation values of energetic compounds : A Comparative study. J.Advances in Physical chemistry Vol. 3 P, 32-40.
- Mulokozi A.M., (1980) J. Less Common Metals, 75, 125,.
- Pauling L., "The Nature of Chemical Bonds," Cornell University Press, New York, Chapter 3, 1960.
- Petit L., et al (2016) Rare Earth prictides and chalcogenides from first Principle J. Of Physics Condensed matter 28 (22) Phillips J.C. (1983) Phys. Rev. B, 28, 7038. Phillips J.C. (1984) Phys. Rev. B, 30, 6195.
- Rezukhina T.N., (1974) T.F.D. Sisoeva, L.I. Holokhonova and E.G. Ippolitov, J. Chem. Thermodynamics, 6, 883.
- Roy Eyring Le et al. (2002) Hand Book on the Physics and chemistry of rare earths, Elsevier. Rudy JM Konings et al. (2008) Thermodynamic properties of actinide compounds. The chemistry of the actinide and transactinide elements page 2113-2224.

Sappegin A.M., (1987) A.V. Baluev, and O.P. Charkin, Zhurnal Neorgan incheskoi Khimii, 32, 318. Springer (2001) Crystal chemistry of rare earth chalcogenides ; Russian Journal of coordination. William G. (1978) Dareell Lyon, W. Osbome, E. Howaard, Fermande Grandjean, J. Chem. Phys., 69, 167. Zhuze V.P. (1989) and I.A. Shelykh, Sov. Phys. Semicond. 23(3), 245.

Shivraj Bhardwaj Associate Professor, Department of Physics , B.S.A. College Mathura , Dr. B.R. Ambedkar University Agra.