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Abstract

Solution of initial value problems of fractional differential equations with Adomian
decomposition method is an emerging area of present day research as these equations are being
used in various applied fields. The Adomian Decomposition Method is a semi-analytical method
for solving ordinary and partial non-linear differential equations. The aim of this method is
towards unified theory for the solution of partial differential equation. The aim which has been
superseded by the more general theory of the homotopy analysis method. In this paper, we
worked on Adomian decomposition method to solve the initial value problems of linear and non-
linear fractional differential equations.
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Introduction

The Adomian decomposition method has been used to solve various scientific models.
The Adomian decomposition method yields rapidly convergent series solution with much less
computational work. Unlike the traditional numerical methods, the Adomian decomposition
method needs no discretisation, linearization, transformation or perturbation. Recently, more
attention devoted to the search for reliable and more efficient solution methods for equations
modelling physical phenomena in various fields of science and engineering [6,7]. One of the
method which has been received much concern is the Adomian decomposition method.

In this work, our emphasis is todetermine the accuracy and efficiency of the Adomian
decomposition method in solving initial value problems of linear and non-linear fractional
differential equation.

Journal for all Subjects : www.lbp.world



Preliminary Concept:
Riemann-Liouville fractional integral

Definition
Suppose that f(z) € C([a,b]), a < x < bthen the Riemann-Liouville
fractional integral of order o of a function f(z) is defined by

110 =t [ gt )

where a €] — oo, 00|

This formula represents the integral of arbitrary order a > 0, but
does not permit order o« = 0 because it formally corresponds to the
identity operator.

Riemann-Liouville Fractional Derivative

Recently many models are formulated in terms of fractional deriva-
tives, such as in control processing, viscoelasticity, signal processing
and anomalous diffusion.

Definition
The Riemann-Liouville fractional derivative [4] of a function f(z), where
f(z) € C([a,b])and a < z < b with fractional order o, o €]0, 1] is de-
fined as

o 1 d o f(@)
Diuf ) = i |, o

This is called the Riemann-Liouville fractional derivative of arbitrary
order a.

If 0<a<lie,a€)0,1]

then D¢, f(x) exists for all f € C'([a,b]) all = €]a, b

Lemma 1:

for «, 8 >0, f(x) € L[1]0,T] then
I 1) f(x) = 16 f () = 1) I f (=)
is satisfied almost everywhere on [0,7T]. Moreover, if f(x) € L;[0,T]
then the above equation is true for all x € [0, 7.



Caputo Fractional Derivative
Definition

Mathematically [1,2,3] it is defined as,
Suppose that, a >0, x > a, a,a,x € R

2

1 fx [ dt, n—1<a<néeN

Fn—a) Ja (z—t)oti-n
Dgf(l') = < dT;J;(nx) a=n €N i (3)

| L flz) a<0

is called the Caputo fractional derivative or Caputo fractional dif-
ferential operator of a.

Lemma 2:
If a>0, f(z) € L1[0,T].

then, “Df, I f(z) = f(z) for all = € [0,T)

Proof:
By the definition of Riemann-Liouville fractional derivative, by using

equation (2),
Di ) = e 3 | e

I'l—a) ) du (x —t)e
by substltutmg a=n,f(x)= f(t)y=t
(z —1) =
= —dt = du

Also, new limit point will be
whent=x=u=0
whent=0=u==x



.. The above equation becomes,

Now, using integration by parts,

D f(x) :ﬁ%/j [(aj—u) /O " — (/OW/O u"du)du]

1 4 /O )

['(1—n) dx (—n+1
1 d [ u—n+1+1 ]x
(=n+1DI(1—n) de [-n+1+1],
1 (—n + 2)z~ "1

(—n+1DI'(1—=n) (—n+2)

Hence,
x—n+1

Pw = mryra—m W

Secondly, by the definition of Riemann-Liouville fractional integral of
a function f(x)

N A
o 1@) = 7y | ooyt

Let usput a« =n, f(z) =z = f(t) =t
(x—t)=wu

= —dt =du

whent =z =u=20




whent=0=u==x
.. The above integral becomes,

B0 = / L du
:ﬁ /0 (- u) u"du

il - f (2 2

“n(n+ 11)F(n)
or () :(n DT D) e (5)

n+1

Now,
Multiplying the Riemann-Liouville derivative operator to the equation
(5) and using (4), we get

xn+1
o+ o+ (@) 0* [(n + )I'(n + 1)]

xfn+1

m+1D)I'(n+1) (1—=n)I'(1—n)

Hence, D 1j:(x) =f(x)



Adomian Decomposition Method
Consider the differential equation

Lv+Rv+Nv=g------ (6)

where,

L - highest order derivative & easily invertible.

R - linear differential operator of order less than L.

Nv - represents the non-linear terms.

g - source term.

The functions v(x) is supposed to be bounded for all z € I = [0,7] &

the nonlinear term Nv satisfies Lipschitz condition i.e.,

for initial value problem, we conveniently define L~ for L = jt—'; as the
n-fold definite integral from zero to x. If L is second order operator,
L~!is a two fold integral & so by solving for v.

INv — Nw| < ki|v — w|

where kp is a positive constant.

Since L is invertible there, we get,

L'Lv=L'g—L'Ro—L'Nv+B--------. (7)

where,
B is the constant of integration & satisfies LB =0 .

L= [ () ds

Now, the Adomian decomposition method consists of approximating
the solution of (6) as an infinite series

U(y) $) = Z @n(y7 $) ......... (8)
n=0
and the nonlinear term Nv will be decomposed by the infinite series
of Adomian polynomials.

Nov = ZAn(vo,m,vz, ) e (9)
n=0
where An is Adomian polynomial calculated by using the formula,
1| d"
T Lw (w( ))] NP



where,
w(A) = Z Aoy,
n=0

Substituting the decomposition series i.e. equation (8) & (9) in (7).
We get,

Z vu(y, ) = B+L 1g— L_1R< Z vn(y, :z:)) — Z Ay (vo,v1 -+ vy) - - (10)

n=0 n=0

from the above equation, we can say that,
vo =B+ L 1g
v = — L (Ruy) — L1(Ap)
vy = — L' (Ruy) — L1 (4)

Vpi1 =L ' (Rv,) — L7Y(A,), n>0

where B is the initial condition.
Hence all terms of V are can be found & the general solution obtained
by using Adomian decomposition method as

The convergence of the series [5]has been proved.

Now,we apply Adomian decomposition method to derive the solution
of fractional partial differential equations. We solve few examples by
Adomian decomposition method.

Firstly, we apply the Adomian decomposition method to obtain ap-
proximate solution of initial value problems for fractional BBM-Burgers
equation with € = 1.



Example 1:
Consider the following nonlinear fractional differential equation:

v Pv v Ov O

oxre 8y3 + 8y2 - 8_y + Ua—y
(y,2) ewx [0,T] & 0<a<1
with initial condition,
v(y,0) = f(y) where f(y) = cosy

Solution
Given nonlinear fractional differential equation is,

0%v _831; +82v _@ —I—U@— 0
ox®  Oy3  Oy®> Oy oy

=0

0 o0 Pu 0 o

= oxe Oy Oy Oy? * oy
- = U(y7 x)LyU(y7 I) + Lyyyv(ya CC) - Lyyv(ya .CU) + Lyv(ya .CC)

where, , ,
0 0 0
yyy:ﬁa Lyy:_gv Ly:_
Y dy dy
by the definition of Caputo fractional derivative D & we know that
I is inverse of the operator D¢.
Now, applying I to the both sides of the given equation,
we get,

L

v(y,x) = I1*(Nv) + I%(Lyy,v) —I%(Lyv) +1°(Lyo) + B

where



The first few terms of the Adomian polynomials are given by:

8@0
An = =9
0 =V 8y
ov ov
Al :an—l + Ula_yo
ov ov v
Az =vogs +uigs +uags
and so on.

using equation (10), we get,

f: valy,z) =B — I ( f: A (vo, vy -+ vn)> + 10 ( f: Lyyyvn>

n=0 n=0 n=0

(L) (X L)
n=0 n=0
It is clear that,

V1 = — IaAO + ]aLyyyUO - [aLyy?}o + IaLyUO

Vo =— — [aAl + ]aLyyyUl — [aLyy?}l + IaLy

Upp1 = —1"A,, +1°Ly,v, — 1L, +I1°Lyv,
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by putting the value of vy, v1,v9 - -+ , from above, we get the solution
of initial value problem

v(y,x) :U0+Ul+‘/2+1}3+"'+vn+"'

vo =v(y,0) = f(y) = cosy
v = — [aA() + [a(LyyyUO) - IQ(LyyUo) + [a(LyU())

SO - ")+ ) - ) o
B I'a+1)

xOZ

v =f1(y) TatD)

where,

i) =f) + f'y) = ") + () = f(v)
=(—siny — 1) cosy — 2siny

vy = — I(A1) + I"(Lyyyv1) — I%(Lyyv1) + I%(Lyvr)
fQ(y) an

I'2a+1)

where,
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foly) == [f() + 1) + L) () = A" W) + A () = fiy)]
= cos’ y + 3cos’y + ((— siny — 1)siny — 2siny — 1) cosy

— 5sin®y — 2siny,

Similarly,
3}3&
U3 —f3(y)m
xna
on =W r e D
Summing all these terms we get the solution of the equation.
(o2) =F ) + 7 ) + e+
v €Tr) = — J— N
v T+ ""Y T T2ar )
xna
0 e
v(y,z) =) mfn(?ﬂ

n=0

where fy(y) is an initial condition.
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Example 2:
Consider the system of initial value problem of fractional equations.

Div =vDyv +wD, v
Diw =vDyw + wD,w

where 0 < a <1 & (y,z) € Q0,7
& with initial condition

v(y, 2,0) =f(y, 2)
w(y,2,0) =g(y, 2), y,z €

Note that, Q= (0,1)
Solution
The above system can be written in the equivalent form

oru_ v o
o _vﬁy w@Z
0%w ov ov

=V— + W=

ox® oy 07

ov ov
o N1 (v, w) _Ua_y + wo
Ov ov
& No(v,w) _Ua_y + wo
. Lv =Ni(v,w)
& Lw =Ns(v,w)

Applying L71(-) = I to the both sides of above,
we get,

U(Z/?'Z)x) :¢+IQN1(U,UJ)
& w(y, z,x) =¢ + I*No(v, w)



13

where the nonlinear operator N; (v, w) & Na(v,w) can be written in
the decomposition form

Ni(v,w) = Z Ay (v, v1, )
n=0

NQ('U, 'UJ) = Z Bn(UOJ U1y Un)
n=0

where A,, & B,, are the Adomian polynomials which has the following
form

1[d" =~ . \]
A, = Bx Nl(v,w)(z )\UZ')

i=0 4 A=0
B 1_an( )iy _ 0,1,2
n = 1| 3y, v, w (% yN=U,1,2,---
nl [dar 7 ar [

Generalizing these Adomian polynomials,
we get

i=0 i=0
we have,
(%0 (%0
Ay=v) — + wy ——
0 0 Y 03,
vy 0vy Ovg Ovg
Al=v) — + wWo m— + U1 +wWi——
! 0 Oy 92 18y Y0z
ov ov ov ov ov ov
AQZ’UO—2+’U)0—2+’01—1+’LU1—1+—2+ 0

oy 0z oy 0z oy 2 0z
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Similarly,
Qv aUS Ovy Ovg Oy
As = vy — 73 ov2 ovy duy
3= W G T W s Fug s TG et
w % v % w %
KL "oy 0z
and so on,
Now,

To solve this problem again we have to generalize these Adomian poly-
nomials as follows,

B, :%[CMH(ZMZ) (aﬁi )

(iAw> (Qi )LZO, n=0,123,-

.. By =y %—:0 + wy %
o :ana_u; i 8(9 N “Pau; b 6520 AL



and so on,

from equation (10) of Adomian decomposition method,
we obtain,

Un(ya Z,ZC) = U(ya Z,O) =+ IQ<ZAn(U0,U1, o Un)>&

n=0

WE

n=0

NE

wy(y, z,x) = w(y, 2,0) + I ( Z By, (wo, wy, - - - wn))

n=0

I
=

n

The associated decomposition is given by,
vo =v(y, 2,0), vy =1 (Nl(Vn,wn))
Wo :w(y, 2y 0)7 Wp+1 = ]a(NZ(Una wn))>n - 07 17 27 s

Then using above equations we get,

vy =v(y, 2,0)
(%] :IQAQ
(%) :[aAl

a
Un+1 =1 An

15
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Similarly,
wy = w(y, z,0)
w, = 1¥By
wy = 1¥B;
Wpt1 = 1B,
using these values of vy, vy, v9 -+ v, & wo,wy, - w, we can find a

solution of given initial value problem

Vo :U(y7 25 0) = f(ya Z)
(% :IQ(A())

_ 1 / S S PSR <L
) Sy @—p— Yoy T,

:fl(yjz)m

where,

of(y, z)
dy

+9(y, 2)

fl(y,Z):—[f(y,Z) Oz

(%) :]a(Al)

:fQ(yv Z)

of(y, Z)]

an

I'2a+1)



where,

afl(y,Z) afl(:%z)

foly, z) = | f(y, 2) 3 +g(y, 2) 5t
fi(y, 2) 9y +9(y, 2) 5,
Similarly, we can find wy, wy, wy, - - -
Wo :w(yv 25 0) = g(ya Z)
w1 :IaBO
_ 1 ’ 1 dwyg Owy
() ] CEDEE [ T “’OW] dt
(0. 2)
I )
where,
_ 0f(y,z) dg(y, 2)
91(y,2) = [f(af,y) 5 + g(y, 2) 5
W2 :Ia(Bl)
an
=92(y, 2) m
where,
ag?(Q? Z) agl(ya Z)

92(y,2) = f(y,2) Dy +9(y, 2) o

fi(y, 2) agg;, ?) + 91(y, 2) aggi, 2

17



Summing all these terms we get,

e.¢]

VY, 2,) =Y Uy =V Vit vt U
n=0

:f(y7 Z) + f1<y7 Z)

x3oz

I'Ba+1) i

o 2c

€T €
Mot P00

f3(y7 Z)

o(y.z,2) =) faly, 2)5

o (na+ 1)

l.’I’LOé

Similarly,

o0
w(y,z,x)zz Wy, = Wy + wy +we + w3+ - A+ w, -
n=0
o 2a

=g(y,2)+gl(y,z)ﬁ+ 92(y), 2)r

33304 o

93(y72)m + -~+gn(y,Z)m

na

o029 = 0s Iy

This gives the solution of the initial value problem.

FRat1)

Tat1)
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Finally, we apply the Adomian decompostion method to obtain ap-
proximate solution of initial value problems for fractional BBM-Burgers

equation with € =1

Example 3:

Consider the initial value problem for fractional BBM-Burger’s equa-

tion of the form [5-11]

o o
ox®  Oy? U@y N
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where,
0 < a <1 & with initial condition,

v(y,0) = ¢ = f(y) =sin(y),y € @ x (0,T]
Note that here,
Q=1(0,1)

Solution:

Given fractional BBM-Burger’s equation is
o 0% ov

T 4v—=0

ox®  Oy? dy
In an operator form it can be written as,

v 0% ov

ox®  Oy? dy
0%v
Oxc (y7 Z) :(Lyyv(% l’)) - (U(y7 37)Lyv(y7 $))
where
0> 0

e gy

& the fractional differential operator 8‘9; is defined in the definition of

Caputo fractional differential operator. We know that I is the inverse

of the operator %.

Now, applying I to the both sides of our equation,
we obtain,

v(y,x) =I(Lyv) — IY(Nv) + ¢
v

where Nv =v—

dy
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In order to solve our problem we must generalize these Adomian poly-
nomials as follows,

) 6 . 7
n TL' d}\n[(z)\vl>ay<; Avi)]/\o an:071727"'

(%0
A =00 ——
0 =Vo By
v ov
A =wgs g
A2 vo@vg —|—U16v1 0231}0

and so on,

Thus,



Ups1 =1"(Lyyv,) — I%(A4,)
and so on,

Consequently,
/U(y,ZU) =vg+v1+va+v3+ -V, +

Finding vy, v1,v9, - -+ by using given initial conditions, we get
vo =v(y,0) = f(y) =siny
v =1%(Lyyvo) — I*(An)

:fl(y)m

where,

fity) =—=f"(y)+ fW)f' )
= siny + siny cosy
= siny(1 + cosy)

also,

vg =1%(Lyyv1) — I%(Ay)

2
:f2(3/)F .

(2a+1)

21
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where,

foly) = =) — fly) = i) f'(y)
=siny + [— 1 —5cosy — cos’y — (1 + cosy) cosy]

& v3 :[a(Lyy”UQ) — Ia(AQ)

3a
=f3(y)F -

(Ba+1)

Simalarly,
4o

o :f4(y)m

xna

Up =fn(y)m

by summing all these terms we will have the solution of the given
initial value problem is

le} 2c 3o

fl(y)+ ‘ v

rear D W TEa 1)

['(a+1)

:L.’IICK

+...+mfn(y) 4+ ...

v(y, =) =f(y) + f3(y)

xna

sy, ) =) mfn(y)

n=0

This completes the solution of BBM-Burger equation.
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