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ORIGINAL ARTICLE

S-ENTROPY AND FAMILY OF DISTRIBUTIONS

MEENA KUMARI

Hindu Girls College, Sonipat

Abstract:

Entropy is a measure of uncertainity in a randome variable. In this context, the
term usually refers to the Shannon's measure of entropy, which quantifies the expected
value of the imformation contained in a massage. It has vast application in the social
sciences and all branches of science. Researchers have defined different form of entropy
as Mathai and Rathie, Aczel and Z Darcozy. But A Renyi and Shannon's measure of
entropy has sought wide attraction as extensive and non-extensive measure of
imformation. In this study our interest in defined S-entropy using lambert functions.

KEY WORDS:
Entropy, S-entropy, extensive and nonextensive measure, Lambert function.
INTRODUCTION

There is hardly any area of sciences which is not associated with term 'uncertainty' or 'randomness'
Shannon provide a quantitative measure of this uncertainty known as 'Entropy'. Entropy is considered as a
measure of disorder or randomness associated with the system which is some total of the large number of
constituents. Entropy assumes optimum value when the system can be in any number of states randomly
with equal probability and it takes value zero when the system is in a specific state means no uncertainty is
there. Landsberg studies various possible variations in the function form of different states. Some of these
states turn out to be extensive where the entropy of a combination of a system is simply the sum of the
entropies of the system. In this type of situation Shannon's and Renyi's entropy are being used and known as
extensive from of entropy. Tsallis has defined the non extensive measure of entropy. In probabilistic
optimization, we may therefore consider a fractional size of the register, or equivalently, an integral number
of cells in the register with fractional sized cells to accommodate a given amount of information.
Probabilistic optimization in place of the deterministic parameterization of classical Shannon information
theory (Nielsen and Chuang) becomes invetable in quantum computing contexts, and hence, our use of the
fractional cell sizes may be a classical precursor of the inevitable departure from stringent Shmmon type
concepts. Shafee has defined another form of entropy defined as S-entropy using the lambert function. It
turned out to be an appropriate candidate in a situation where the probability distribution does not confer to
any of the previously defined forms, expecially when the probability density functions sought is expected
to be stiffer than that resulting from maximizing the other measures of information i.e. entropies. We have
defined S-entropy of various statistical probability density function.

Measure of Entropy
The infromaion scheme is represented by
XisXounrennes X, X
s = = 1

PisPoreeeee Py P
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Shnnon's measure is given by

H(p)=H (P, pyevvep,) == _p; logp, 2

i2i

The entropy (2) may be interpreted as the expected valve of the random variable (-log pi) which is
the uncertainty with xi whose probability is pi.

Renyi (1961) defined the parametric measure of entropy as

n

| > by

H (P)= InE— a#1  o>0
R n

1-a Zpg

i=1 l

Whichisoforder O
It may be noted that it

o = 1H(P)=—-) Pilog Pi

So that Shannon's measures of entropy is a limiting case of Renyi's measure of entropy. Renyi entropy for a
continuous variable is defined as

HR(X):HR(k,fo):—ﬁJ‘fokdu A>0 A=l 3

And Shannon's entropy for the continuous vhriable is
Hy, (f) =] f () log f(x)du -
X

Is obtained from (3) for A T 1. Hx( 7\,) is monotonically decreasing and pseudoconcave function of

A and share similar properties as that of Shannon entropy. In this chapter our measure of interest is

Fariel Shafee entropy also known as S-entropy. The cases are as
Hg(L) ==Y p(x)"log p(x)(for discrete dist")
And

H L) = —I f(x)"log f(x)dx (for continuous dist")

S-Entropy for Different Probability Distributions

1.1 Uniform distribution (Discrete)
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p(x/n)= l,x =L2,......n
n

n

H.) == [p()] log p(x) = —ZH 1og( 1),

x=1 x=0 n
_logn

P
n
H,(X)=logn.

1.2 Uniform Distribution (continuous)

9

H,0) =~ % %) log(ljdx,

p
T 1
= (%j _a+%—a%}logﬁ = E%E,
and

H,(X)=logp.

f(x):é,(x—<x<oc + B

1.3 Geometric Distribution.

p(x/ p)=p(l-p),x=01,

..........

0

H,0\) ==Y [ p-p) ] log[ p(1- py ],

= - i [p(1-p)x] log p - i[p(l - p)x]k log(1-p),

x=0

o 1 o (1—P)k B
HA)==p logp{—l_(l_p)k} p {[1—(1—p)k]2}10g(1 ),

and

Hsh(X):—logp—{(l_p)log(l_p)}.
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1.4 Pareto Distribution

_o(x)" _op’
f(x)—B(Bj =B,

Hs(x)=—j§(‘j% 1og(;—ﬁlj@

:'((XBu)X[I;x%(ﬁl)d)f}log(aﬁa)+((1Ba)x(a+1)J‘;OX%QH) logxd,

B . xfk((x-i—l)-é—l °°1 . . NS xfk(a+l)+] - " x7>V(a+1)+| 1dx
=-(aB*) {—7\.((1+1)+1L og(@B*)+(©@B“) (o +1) (OgX(_Ma +1)+Jl _.[;3 —7\.((X+1)+1;

B —A(a+)+1

Ao +1)+1

B —A(o+)+1

0gp (af “y (o + 1)2 B “h(atl)

:(QBQ)[ }Og(aﬁa)_(aﬁa) R YT R YT

H,(X)=logp —loga +l+1.
o

1.5 Triangular Distribution.

2 (x
OL_B(E] 0<x<ap

2 X
E I

T RET R IEN S N
() (5] ol () 5) 2w

) fﬁ[(l 2a)ﬁ]k(l‘§jk m[(l 2a)6}d’“
1 —%J (13 -5 o

Put 1—%=y:> x=B(1-y),
(35 ) Gl ) e
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L) g oL ) oo
(e o 2 St | 2
‘B(a—z—amjP"g((l—za)rfﬂ(f:]m & )J H“"g”ﬁf I aiii"y]
mo={ ) vl e | o) Sl st 5 (20
‘%@im(igmqﬁiw}@jmjOXT%““”

{@imJ%+§

and

H, (X)zlogB—log2+ %

1.6 Lomax Distribution.

f(xX)=ak'(x+k)“"P,x>0,a>0and k >0
_ (> a —(a+) T a —(a+1)
H, (V)= jo [ak*(x+k) " ] log[ ak* (x + k)™ Jax
= —a"k™ log(ak®) j:(x )Y dy 4 (@ + Da kK j: (e + k) D log(x + k)dx,

put x+k=y, dc=dy,

=—a" k™ log(ak“)j: y Dy + (a+1)ad" k™ j:f““” log ydy,

SAEY SAEY SRy
H 09 =—3% " jog(akey- L3 Dak oy taxDaTk
—A(a+1)+1 ~Ma+1)+1 [_Ma+1)+1]2
and
Hsh(X):1+l+log(Ej.
a a
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1.7 Normal Distribution.

f)= leTs
w 1 A —(x-a)? . 1 *ﬁ(xw)z
HS(X)__LO[W} {e J log[B\/%e ]dx,

1 Y w1 (1 Y . w
:QogBﬂ)‘Lﬂ[Bﬁj e dy+ﬁ(ﬁﬁj Loy e dy

Put x—a=y,=>dx=dy

—xa)

e’f ,—00 < X < 00,—00 < 0 < 00,3 >0

1 Y w0, 1 ' w
_(logB\/ﬁiij I_we dy+2—[32(B\/EJ Ve

A L2 A
1 o 1 o o]
=(1°g‘3“2“igmj 2 e dyrim [Bm] 2,z o

1
Put yzzz,:>2ydy:dz,:>dy=2 —dz
z

s A A n
o o ] 1 1 TR |
21 e dz 2| ze —
j IO 2z 2B2 (B~/2n] JO 2z

= (loep m{wlﬁ

i _ . n F(I/Z) +L 1 . F(3/2)
= (1 gBJT(ij Lx/zw)“] zsz(w%] [(x/zﬁz)m]

) (logﬁm(ﬁjﬂjxﬁ;‘/)%] +2LBZ(B\/1%T%{(M\2@ )m]
- iz |67 ) B

o ) A 2
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and
1
H, (X) =logPB+ Elongce.
1.8 Generalized Pareto Distribution. For x > O(lfc <0and k> O) or

for 0O<x<k/c (ifc>0 and k > 0),

f(x)=%(1—%j -

Case 1. For X > 0(if c <and k > 0),

i) Tl 3]

put & = y,dx = Edy,
k c

1

—_ owékl_K(l_ y)(;—x] logl:%(l —y)(zljl dy,

= jw kl: (1— y)(%_kj logkdy — J: k' (lc—zc) (1 —y)(%_kj log(1-y) dy,

0

- -0
A
—A+1

_K = ! loghk — k' @;f)f: (1-) "logll -y
c &
(-1) (— —A+ 1)

i &

Putl—y=z, dy=—dz,

-0

k' 1 . (l—c) o Lo
= —0|logk + k™ >——~ ¢ logzdz,
c {(K—kc%c)/c } el ¢’ IO = osE
1-1 _ 2
= —k 10gk+k177L (1 ZC) < 2 >
A—Ac+c c (k—kc+c)
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1-a .
Hg(h)= k—logk +k (1-c) —.
A—Ac+c (x—xc+c)

Case 2. For O<x<k/c(ifc>0 and k >0),

k" k k k
Putl—g=y,dx=—édy,
k c
_pk (B H (]
= OZkT log{zy dy,
- (r A
— Olk_y(c leogkdy j klfk (1 - )y(c kjlogydy’
c
- - - 1
A
1 _ c—?wrl
SR PR SR YR Gl I S
c (Mj ¢? (&_Ml
c | \c
1-A _ 2
:—logk + kl_x (1 ZC) ¢ 5 s
A—Ac+c c (X—kc+c)
-1 _
Hs(k):k—logk+k“X (1-¢) =,
A—Ac+c (k—?»c+c)
and

H,(X)=logk+1-c.

CONCLUSION.

We have computed the Shafee entropy for the various classes of density functions. From the
expressions observed for the S entropy, we have shown that Shannon entropy becomes the particular case of
S entropy. So, it can be used in the situation where extensive as well as non extensive measures of
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information are applicable.
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