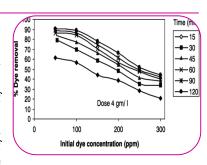


REVIEW OF RESEARCH


REMOVAL OF GREEN-B DYE USING SAW DUST AS AN ADSORBENT

Nimkar D. A.

P. G. Department of Chemistry, D. B. F. Dayanand College of Arts and Science, Solapur (Maharashtra), India.

ABSTRACT:

Now a days textile industries produces acute environmental problem. Many textile industries always use dyes and pigments to colour their product. Colour removal textile effluent is a major environmental problem. The colored effluent have an inhibitory effect on the processes of photosynthesis which are disturbing plant life.. It also produces problems on human life. For this study Dye Green B (Colour dye) is selected because it is not easily degradable and is toxic in nature. The effect of different parameters like $p^{\rm H}$, contact time, adsorbent dose, and temperature were studied .

The Freundlich and Langmuir adsorption isotherm were studied. The amount of adsorption increases with increasing adsorption dose, contact time, p^H and temperature. The ultrasonic velocity of the dye solution was also studied. The result showed that, the velocity increases with adsorption. The kinetic study shows that pseudo second order model is more suitable than pseudo first order model. This effect is observed due to swelling of the structure of the adsorbent which enables large number of dye molecules adsorbed on adsorbent body.

The result showed that 80% dye was removed when p^H is 8 and contact time is 110 minutes. When the temperature increases from 298K to 308K the adsorption capacity also increases.

KEY WORDS: adsorption, adsorption isotherms, adsorption kinetics, dye, Dye Green B, saw dust

INTRODUCTION

The removal of Color from textile effluent is a major environmental problem.(Namasivayam C *et al.*, 1993) Many dyes and their break down products are toxic for living organisms (Nigam P *et al.*,2000)and thus affecting aquatic ecosystem. Dyes have a tendency to produce metal ions in textile water produces micro toxicity in the life of fish. There are many physical and chemical methods for the removal of dyes like coagulation, precipitation, filtration, oxidation, and flocculation. But these methods are not widely used due to their high cost. Adsorption technique (Sarioglu M. *et al.*, 2006) is the best versatile method over all other treatments. Therefore the proposed work will undertake using agriculture waste like saw dust for removing dye material (Singh B.K. *et al.*, 1994) (Mckay G *et al.*, 1986) (Khare S.K. *et al.*, 1987) (Joung R.S. *et al.*, 1977) from aqueous solution.

MATERIALS AND METHODS:

Saw dust was washed with distilled water and dried in an oven at 120^{0} C. It was then sieved through sieve no. $100~(150\mu m)$. The BET surface area of Saw dust was $42.m^{2}/gm$. obtained from BET technique. Dye Green B used was from Finer chemicals Ltd.

The X-ray diffraction study of saw dust was carried out by X-ray Fluorescence Spectrometer (Philip model PW 2400) as shown in (figure1). The morphological and XRD study clearly indicates that the adsorbent is porous and amorphous in nature.

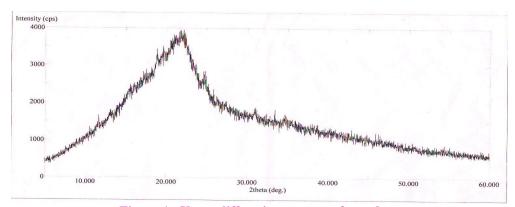


Figure 1: X-ray diffraction pattern of saw dust

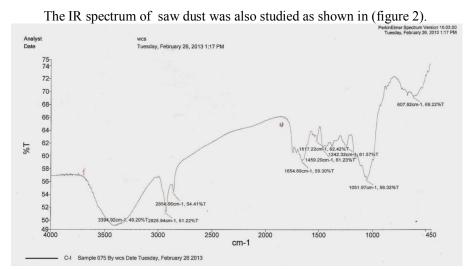


Figure 2: IR spectrum of saw dust

From the **SEM** analysis it was found that there were number of pores and cave type openings on the surface of adsorbent which would have more surface area available for adsorption (Khatri S.D. *et al.*, 1999) as shown in (figure 3)

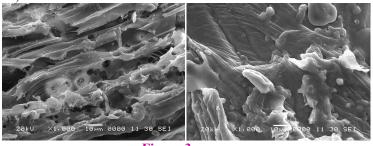


Figure 3
(Before adsorption) (After adsorption)
Scanning electron micrograph (SEM) of the saw dust adsorbent

Available online at www.lbp.world

Experimental Procedure:

Batch adsorption experiments were conducted by shaking 200 ml of dye solution having concentration (50mg/l) i.e. 50 ppm with different amount of adsorbent and having different p^H values, at different temperatures as well as different time intervals. The adsorbent was then removed by filtration and the concentration of dye was estimated spectrophotometrically at λ_{max} = 580 nm. The amount of dye adsorbed was then calculated by mass balance relationship equation,

$$q_{e=\frac{C_0-C_e}{x}}$$

Where,

 C_o = Initial dye concentration

 C_e = Equilibrium dye concentration

 q_e = Amount of dye adsorbed per unit mass of adsorbent.

X = Dose of adsorbent.

RESULTS AND DISCUSSIONS:

For getting highest amount of dye removal various factors were optimized.

Effect of contact time:

To know minimum amount of adsorbent for the removal of maximum amount of dye, the contact time was optimized. The results showed that the extent of adsorption is rapid at the initial stage after 110 minutes the rate of adsorption is constant. About 85% dye was removed. (Figure 4)

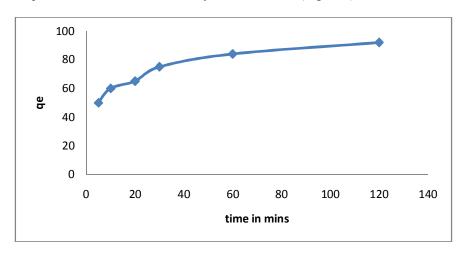


Figure 4 Effect of contact time on removal of Green -B dye by saw dust

Effect of p^H:

From (figure 5), it reveals that when p^H of the dye solution increases from 3 to 10 the percentage of dye removal also increases. At p^H = 10, adsorption is maximum. By further increase in p^H adsorption decreases slightly. (Nimkar D.A. *et al.*, 2014)

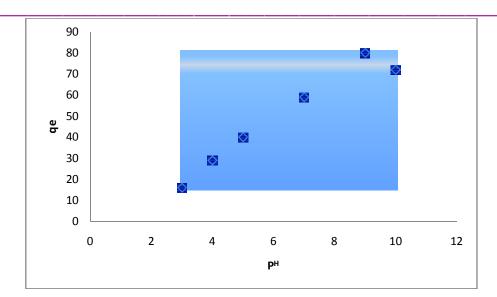


Figure 5 Effect of p^H on removal of Green -B dye by saw dust

EFFECT OF ADSORBENT DOSE:

The different adsorbent doses were studied from the range 0.5gm to 7.0 gm from the results, it is clear that the optimum dose is 1gm/150ml. (Figure 6). By further increase of adsorbent dose, the removal of adsorbent decreases due to some of the adsorption sites remains unsaturated during the process(Ferro. F et al., 2008) (Bhatt R. et al., 2011) (Theng B.K.G. et al., 1955) (Garg V.K. et al., 2004)

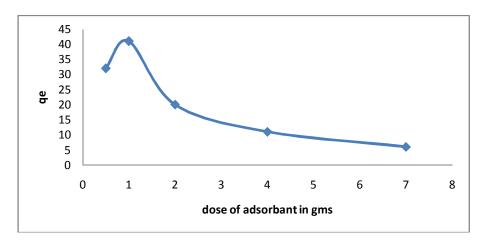


Figure 6 Effect of adsorbent dose on removal of Green - B dye by saw dust

EFFECT OF TEMPERATURE:

The perusal of (figure 7) it is clear that adsorption capacity of adsorbent increases with increase in temperature, due to increase in the mobility of dye ions. Increasing temperature also causes a swelling effect within the internal structure of adsorbent. So that large number of dye molecules can easily penetrate through it (Yamin Y *et al.*, 2007) (Mane R.S. *et al.*, 2012)

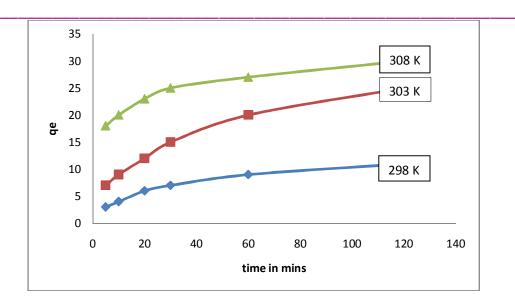


Figure 7 Effect of contact time on removal of Green – B dye using saw dust

Adsorption Isotherm:

Langmuir Isotherm:

In order to study the adsorption of dye according to Langmuir isotherm, following equation was used

$$\frac{C_e}{q_e} = \frac{1}{Q_m \times b} \times \frac{C_e}{Q_m}$$

Where

C_e =Dye concentration at equilibrium (mg/ L)

q_e =Amount of dye adsorbed on the adsorbent (mg/g)

b =Langmuir constant

A graph of C_e/ q_e against C_e was plotted as shown in (figure 8)

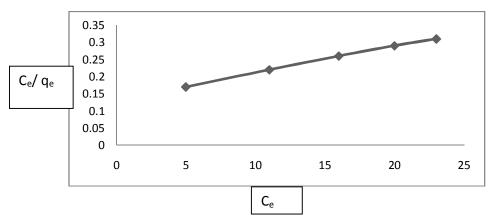


Figure 8 Langmuir Isotherm for adsorption of Green- B dye on saw dust

The correlation factor is closely related to unity, which indicates that the Langmuir isotherm model is applicable(Sen A.K. *et al.*, 1987) (Mallipudi S.*et al.*, 2013) (Parvathi C.*et al.*, 2009). The formation of

monolayer takes place on the surface of the adsorbent (Arivoli S.et al., 2007) (Thievarasu C. et al., 2011)

Freundlich isotherm:

To study the Freundlich isotherm the following equation was used. (Karabulut S. et al., 2000)

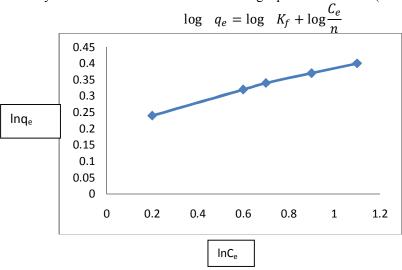


Figure 9 Freundlich Isotherm of Green - B dye on saw dust

The graph of lnq_e against lnC_e was plotted. From the slope, the value of n and correlation factor can be calculated. The value of correlation factor is closely related to one as shown in (figure 9) So it indicates that the Freundlich isotherm also satisfied. The value of n is greater than 1. So the Freundlich adsorption develops appropriately.

ADSORPTION KINETICS:

Pseudo 1st order model:

The pseudo 1st order kinetics model is used to understand the kinetic behavior of the system(Paul S. A. *et al.*, 2011) (Nagada G. k. *et al.*, 2007)(Sarioglu M. *et al.*,2006) It is given by the equation.

$$\frac{dq}{dt} = k_i (q_e - q_t)$$

A graph of $ln(q_e-q_t)$ vs time was plotted as shown in (figure 10)

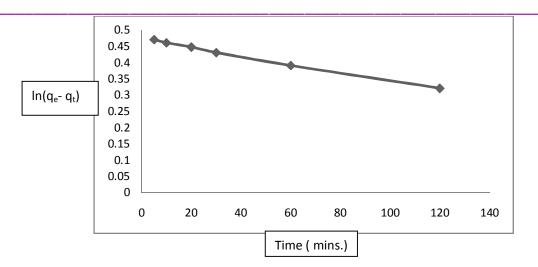


Figure 10 Plot of pseudo 1st order for adsorption of Green – B dye on saw dust.

Table no.1

Slope (K _i) (correlation coefficient)	Intercept (q _e) (Max. adsorption capacity)	Correlation Factor
-0.00120	0.40	-0.88

Pseudo 2nd order kinetics:
The pseudo 2nd order kinetic model was studied using equation

$$\frac{t}{q_e} = \frac{q_e^2}{k_2} + \frac{t}{q_e}$$

Where $q_e = dye$ adsorbed at equilibrium.

 q_t = dye adsorbed at time t

A graph t/q_tof against time was plotted as shown in (figure 11)

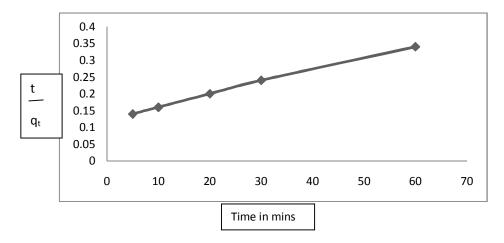


Figure 11 Plot of pseudo 2nd order of Green – B dye on fly ash

Slope (K ₂)	Intercept (q _e)	Correlation factor
0.00353	0.127	0.99

Table no 2

In case of pseudo 1st order kinetic model,(Table no.1) the value of slope and correlation factor are negative. While in case of pseudo 2nd order kinetic model,(Table no 2)the value of slope and correlation factors are positive. Which implies that, the system is more fevourable for pseudo 2nd order kinetics.

CONCLUSION:

Saw dust acts as a best effective low cost adsorbent for the removal of Basic Green – B dye .Batch adsorption was shown that yield of adsorption increases by increasing adsorbent dose, contact time,p^H,and temperature. The fittness of Langmuir model shows that there is a formation of monolayer on the adsorbent surfaces. Similarly Freundlich isotherm also develop approprietly.

ACKNOWLEDGEMENT

Authers are thankful for the financial support to University Grants Commission Western Regional office Ganesh khind, Pune, India under Minor Research Project [File no-47-140/12(WRO)]

REFERENCES:

- 1)Arivoli S., Hema N., "Comparative study on the adsorption kinetics and thermo dynamics of dyes on the activated low cast carbon" Int. J. Phys. Sci. 2 (2007): 10-17.
- 2) Bhatt R., Parve Z. M., Jr. of chemical society of Pakistan 33(2001) 502.
- 3)Ferro F., Journal of Hazardous Material 142 (2007) 144.
- 4)Garg V. K., Kumar Rakesh, Gupta Renuka, waste Dyes and pigments 63 (2004) 243-250.
- 5) Juang R. S., Wu F. C., Tsang R. L., Environ. Technol. 18 (1997) 525-531.
- 6)Karabulut S. Sep. purif. Tech. 18 (2000) 177-187.
- 7) Khare S. K., Panday K. K., Srivastava R. M., Singh V. N., J. Chem. Technol, Biotechnol. 38 (1987) 99-104.
- 8)Khatri S. D., Singh M. K., Ind. Chem. Technol. 6 (1999) 112-116.
- 9)Mallipudi S., et al. International Journal of Engineering Research and Technology, 2(10) (Oct-2002) 4054-4059
- 10) Mane R. S., Bhusari V. N., IJERA 2(3), (June2001), 1997-2004.
- 11)McKay G., Prasad G. R., Mowli P. R., Water Air Soil Pollut. 29 (1986) 273-283.
- 12) Nagada G. K., Diwan A. M., Ghole V. S., App. Eco and Environ. Res. 2 (2007) 1.
- 13) Namasiyayam C. and Kanchanna N., Peranika J.Sci.and Technol. 1(1) (1993) 33-42
- 14) Nigam P., Armour G., Singh D., Merchant R., Bioresour Technol 72 (2000) 219-226.
- 15)Parvathi C. Sivamani S., Prakash C. Colourage Environmental solution. LV I 10 (Oct 2009) 54-56.
- 16) Paul S. A., Chavan S. K., Oriental J. Chem. 27 (2001) 47-51.
- 17) Sarioglu M., Atay U., global nest Journal 8(2) (2006) 113-120.
- 18)Sen A. K. and De. A. K., Water Res. 21 (1987) 885.
- 19) Singh B. K., Rawat N. S., J. Chem. Technol. Biotechnol. 61 (1994) 307-317.
- 20) Theng B. K. G., Wells N., Appl. Clay. Sci. 9 (1995) 321-326.
- 21)Thievarasu C., Mylsamy S. and Sivakumar N., Universal Journal of Env. Research and Tech. 1 (2005) 70-78
- 22) Yamin Yasin, Mohd. Zobir Hussein, Faujan Hj Ahmad, Malaysian Journal of analytical sciences. 11 (2007) 400-406.