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ABSTRACT :  

Varies properties of a real symmetric Toeplitz matrix with elements are reviewed here. Matrices of 
this kind often arise in applications in statistics econometrics, psychometrics, structural engineering, 
multichannel filtering, reflection seismology etc. and it is desirable to have techniques which exploit their 
special structure Possible application of the results related to their inverse, determinant and eigenvalue 
problem are suggested. We started with relevant definitions and a prerequisite and proceed to a discussion of 
the asymptotic eigenvalue, product and inverse behaviour of matrices. The major use of the theorem of this 
paper is the relate the asymptotic behaviour of a sequence of complicated matrices to that of a simpler 
asymptotically equivalent sequence of matrices. 
 
Keywords : statistics econometrics, psychometrics, structural engineering. 
 
1. INTRODUCTION 
A Toeplitz matrix is an n × n matrix Tn = [tk,j ; k, j = 0, 1, . . . , n − 1] 
where tk,j = tk−j, i.e., a matrix of the form 
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Such matrices arise in many applications. For example, suppose that 
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is a column vector (the prime denotes transpose) denoting an “input” and that tk is zero for         k < 0. Then 
the vector 
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represents the output of the discrete time causal time-invariant filter h with “impulse response” tk . 
Equivalently, this is a matrix and vector formulation of a discrete-time convolution of a discrete time input 
with a discrete time filter. 

A common special case of Toeplitz matrices — which will result in significant simplification and play 
a fundamental role in developing more general results — results when every row of the matrix is a right cyclic 
shift of the row above it so that tk = t−(n−k) = tk−n for k = 1, 2, . . . , n − 1. In this case the picture becomes 
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A matrix of this form is called a circulant matrix. Circulant matrices arise, for example, in 

applications involving the discrete Fourier trans-form (DFT) and the study of cyclic codes for error correction. 
A great  deal  is known about the behavior of Toeplitz  matrices — the most common and complete 

references being Grenander and Szeg¨o [16] and Widom [33]. A more recent text devoted to the subject is 
B¨ottcher and Silbermann [5]. Unfortunately, however, the necessary level of mathematical sophistication for 
understanding reference [16] is frequently beyond that of one species of applied mathematician for whom the 
theory can be quite useful but is relatively little understood. This caste consists of engineers doing relatively 
mathematical (for an engineering background) work in any of the areas mentioned. This apparent dilemma 
provides the motivation for attempting a tutorial introduction on Toeplitz matrices that proves the essential 
theorems using the simplest possible and most intuitive mathematics. Some simple and fundamental methods 
that are deeply buried (at least to the untrained mathematician) in [16] are here made explicit. 
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The most famous and arguably the most important result describing Toeplitz matrices is Szeg¨o’s 
theorem for sequences of Toeplitz matrices {Tn} which deals with the behavior of the eigenvalues as n goes to 
infinity. A complex scalar α is an eigenvalue of a matrix A if there is a nonzero vector x such that 

 
    Ax = αx,      (1.3) 
 
in which case we say that x is a (right) eigenvector of A. If A is Hermitian, that is, if A* = A, where the 
asterisk denotes conjugate transpose, then the eigenvalues of the matrix are real and hence *  , where the 
asterisk denotes the conjugate in the case of a complex scalar. When this is the case we assume that the 
eigenvalues { i } are ordered in a nondecreasing manner so that 0 1 2.....    . This eases the 
approximation of sums by integrals and entails no loss of generality. Szeg¨o’s theorem deals with the 
asymptotic behavior of the eigenvalues { , ; 0n i i  , 1, . . . , n − 1} of a sequence of Hermitian Toeplitz 
matrices  Tn = [tk−j ; k, j = 0, 1, 2, . . . , n − 1]. The theorem requires that several technical conditions be 
satisfied, including the existence of the Fourier series with coefficients tk related to each other by 
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Thus the sequence {tk} determines the function f and vice versa, hence the sequence of matrices is 

often denoted as Tn(f)*. If Tn(f) is Hermitian, that is, if Tn(f)* = Tn(f), then t−k = tk
* and f is real-valued. 

Under suitable assumptions the Szeg¨o theorem states that 
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for any function F that is continuous on the range of f . Thus, for example, choosing F (x) = x results in 
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so that the arithmetic mean of the eigenvalues of Tn(f ) converges to the integral of f . The trace Tr(A) 

of a matrix A is the sum of its diagonal elements, which in turn from linear algebra is the sum of the 
eigenvalues of A if the matrix A is Hermitian. Thus (1.7) implies that 
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Similarly, for any power s 
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If f is real and such that the eigenvalues ,n k ≥ m > 0 for all n, k, then F (x) = In x is a continuous 
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function on [m, ∞) and the Szeg¨o theorem can be applied to show that 
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From linear algebra, however, the determinant of a matrix Tn(f ) is given by the product of its 

eigenvalues, 
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As we shall later see, if f has a lower bound m > 0, than indeed all the eigenvalues will share the 

lower bound and the above derivation applies. Determinants of Toeplitz matrices are called Toeplitz 
determinants and (1.11) describes their limiting behavior. 
 
The Asymptotic Behaviour of Matrices 
Any complex matrix A can be written as 
 
    A = U RU ∗,      (2.1) 
 

where the asterisk ∗ denotes conjugate transpose, U is unitary, i.e., U −1 = U∗, and R = {rk,j } is an 
upper triangular matrix ([18], p. 79). The eigenvalues of A are the principal diagonal elements of R. If A is 
normal, i.e., if A∗A = AA∗, then R is a diagonal matrix, which we denote as R = diag(αk; k = 0, 1, . . . , n − 1) 
or, more simply, R = diag(αk ). If A is Hermitian, then it is also normal and its eigenvalues are real. 

A matrix A is nonnegative definite if x∗Ax ≥ 0 for all nonzero vectors x. The matrix is positive definite 
if the inequality is strict for all nonzero vectors x. (Some books refer to these properties as positive definite 
and strictly positive definite, respectively.) If a Hermitian matrix is nonnegative definite, then its eigenvalues 
are all nonnegative. If the matrix is positive definite, then the eigenvalues are all (strictly) positive. 

The extreme values of the eigenvalues of a Hermitian matrix H can be characterized in terms of the 
Rayleigh quotient RH (x) of the matrix and a complex-valued vector x defined by 

 
   RH (x) = (x∗Hx)/(x∗x).      (2.2) 
 

As the result is both important and simple to prove, we state and prove it formally. The result will be 
useful in specifying the interval containing the eigenvalues of a Hermitian matrix. 
Usually in books on matrix theory it is proved as a corollary to the variational description of eigenvalues 
given by the Courant-Fischer theorem (see, e.g., [18], p. 116, for the case of real symmetric matrices), but the 
following result is easily demonstrated directly. 
 
Lemma 2.1. Given a Hermitian matrix H, let ηM and ηm be the maximum and minimum eigenvalues of H, 
respectively. Then 
    *

: * 1
min minm Hx z z z

R x z Hz


        (2.3) 
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    *

: * 1
max maxm Hx z z z

R x z Hz


        (2.4) 

 
Proof. Suppose that em and eM are eigenvectors corresponding to the minimum and maximum eigenvalues ηm 
and ηM , respectively. Then RH (em) = ηm and RH (eM ) = ηM and therefore 
 
   minm Hx

R x         (2.5) 

 

   maxM Hx
R x         (2.6)  

 
Since H is Hermitian we can write H = UAU∗, where U is unitary and 
A is the diagonal matrix of the eigenvalues ηk , and therefore 
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where y = U ∗x and we have taken advantage of the fact that U is unitary so that x∗x = y∗y. But for all 

vectors y, this ratio is bound below by ηm and above by ηM and hence for all vectors x 
 

    ηm ≤ RH (x) ≤ ηM    (2.7) 
 

which with (2.5–2.6) completes the proof of the left-hand equalities of the lemma. The right-hand 
equalities are easily seen to hold since if x minimizes (maximizes) the Rayleigh quotient, then the normalized 
vector x/x∗x satisfies the constraint of the minimization (maximization) to the right, hence the minimum 
(maximum) of the Rayleigh quotion must be bigger (smaller) than the constrained minimum (maximum) to 
the right. Conversely, if x achieves the rightmost optimization, then the same x yields a Rayleigh quotient of 
the the same optimum value. 

The following lemma is useful when studying non-Hermitian ma-trices and products of Hermitian 
matrices. First note that if A is an arbitrary complex matrix, then the matrix A∗A is both Hermitian and 
nonnegative definite. It is Hermitian because (A∗A)∗ = A∗A and it is nonnegative definite since if for any 
complex vector x we define the complex vector y = Ax, then 
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Lemma 2.2. Let A be a matrix with eigenvalues αk . Define the eigen-values of the Hermitian nonnegative 
definite matrix A∗A to be λk ≥ 0. Then 
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with equality iff (if and only if) A is normal. 
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Proof. The trace of a matrix is the sum of the diagonal elements of a matrix. The trace is invariant to unitary 
operations so that it also is equal to the sum of the eigenvalues of a matrix, i.e., 
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From (2.1), A = U RU ∗ and hence 
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Equation (2.10) will hold with equality iff R is diagonal and hence iff A is normal. 
Lemma 2.2 is a direct consequence of Shur’s theorem ([2], pp. 229-231) and is also proved in [1], p. 

106. 
 
2.2 Matrix Norms 

To study the asymptotic equivalence of matrices we require a metric on the space of linear space of 
matrices. A convenient metric for our purposes is a norm of the difference of two matrices. A norm N (A) on 
the space of n × n matrices satisfies the following properties: 

 
(1). N (A) ≥ 0 with equality if and only if A = 0, is the all zero matrix. 
(2). For any two matrices A and B, 
 
  N (A + B) ≤ N (A) + N (B).      (2.11) 
 
(3). For any scalar c and matrix A, N (cA) = |c|N (A). 
 
The triangle inequality in (2.11) will be used often as is the following direct consequence: 
 
   N (A − B) ≥ |N (A) − N (B)|.     (2.12) 
 

Two norms — the operator or strong norm and the Hilbert-Schmidt or weak norm (also called the 
Frobenius norm or Euclidean norm when the scaling term is removed) — will be used here ([1], pp. 102–103). 
Let A be a matrix with eigenvalues αk and let λk ≥ 0 be the eigen-values of the Hermitian nonnegative definite 
matrix A∗A. The strong norm || A || is defined by 
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1 21 2 * *

: 1
max max
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        (2.13) 

 
From Lemma 2.1 
   2 max k Mk
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The strong norm of A can be bound below by letting eM be the normalized eigenvector of A 
corresponding to αM , the eigenvalue of A having largest absolute value: 

 
    

*

2 2* * * *

: 1
max M M M
z z z

A z A Az e A Ae 


   .    (2.15) 

 
If A is itself Hermitian, then its eigenvalues αk are real and the eigenvalues λk of A∗A are simply λk = 

α2
k . This follows since if e(k) is an eigenvector of A with eigenvalue αk , then A∗Ae(k) = αk A∗e(k) = α2

k e(k). 
Thus, in particular, if A is Hermitian then 

 
   max k Mk

A          (2.16) 

 
The weak norm (or Hilbert-Schmidt norm) of an n × n matrix A = [ak,j ] is defined by 
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The quantity n A   is sometimes called the Frobenius norm or Eu-clidean norm. From Lemma 2.2 

we have 
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  , with equality iff A is normal.  (2.18) 

 
The Hilbert-Schmidt norm is the “weaker” of the two norms since 
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A matrix is said to be bounded if it is bounded in both norms. The weak norm is usually the most 

useful and easiest to handle of the two, but the strong norm provides a useful bound for the product of two 
matrices as shown in the next lemma. 

 
Lemma 2.3. Given two n × n matrices G = {gk,j } and H = {hk,j }, then 
 
   |GH | ≤k G k |H|.      (2.20) 
 
Proof. Expanding terms yields 
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where hj  is the jth  column of H. From (2.13), 
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Lemma 2.3 is the matrix equivalent of (7.3a) of ([1], p. 103). Note that the lemma does not require 

that G or H be Hermitian. 
 
2.3 Asymptotically Equivalent Sequences of Matrices 

We will be considering sequences of n × n matrices that approximate each other as n becomes large. 
As might be expected, we will use the weak norm of the difference of two matrices as a measure of the 
“distance” between them. Two sequences of n ×n matrices {An} and {Bn} are said to be asymptotically 
equivalent if 

 
 (1). An and Bn are uniformly bounded in strong (and hence in weak) norm: 
 
   || An ||, || Bn ||≤ M < ∞, n = 1, 2, . . .    (2.22) 
 
  And 
 
 (2) An − Bn = Dn  goes to zero in weak norm as n → ∞: 
 
    lim lim 0n n nn n

A B D
 

    

 
Asymptotic equivalence of the sequences {An} and {Bn} will be abbreviated An ∼ Bn 

We can immediately prove several properties of asymptotic equivalence which are collected in the 
following theorem.  
 
Theorem 2.1. Let {An} and {Bn} be sequences of matrices with eigenvalues {αn, i} and {βn, i}, respectively. 
 
(1) If An ∼ Bn, then 
 
lim lim .n nn n

A B
 

       (2.23) 

(2) If An ∼ Bn  and Bn ∼ Cn, then An ∼ Cn. 
(3) If An ∼ Bn  and Cn ∼ Dn, then AnCn ∼ BnDn. 
(4) If An  ∼ Bn  and || A−

n
1 || , || Bn

−1 || ≤ K  < ∞, all n, then A−
n

1 ∼ Bn
−1 

(5) If AnBn ∼ Cn  and k A−
n

1 k≤ K < ∞, then Bn ∼ A−
n

1Cn 
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(6) If An ∼ Bn, then there are finite constants m and M such that 
m ≤ αn,k , βn,k ≤ M ,   n = 1, 2, . . .   k = 0, 1, . . . , n − 1.   (2.24) 
 
Proof. 
 (1). Eq. (2.23) follows directly from (2.12). 
 
 (2). |An −Cn| = |An −Bn+Bn−Cn| ≤ |An − Bn| + |Bn−Cn| n→∞ 0 
 
 (3). Applying Lemma 2.3 yields 
 
  |AnCn − BnDn|   =  |AnCn − AnDn + AnDn − BnDn| 
 
    ≤  k An k |Cn − Dn|+ k Dn k |An − Bn| 
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(6) If An ∼ Bn then they are uniformly bounded in strong norm by some finite number M and hence from 

(2.15), |αn,k | ≤ M and |βn,k | ≤ M and hence −M ≤ αn,k , βn,k ≤ M . So the result holds for m = −M and it may 
hold for larger m, e.g., m = 0 if the matrices are all nonnegative definite. 

 
The above results will be useful in several of the later proofs. Asymp-totic equality of matrices will be 

shown to imply that eigenvalues, prod-ucts, and inverses behave similarly. The following lemma provides a 
prelude of the type of result obtainable for eigenvalues and will itself serve as the essential part of the more 
general results to follow. It shows that if the weak norm of the difference of the two matrices is small, then the 
sums of the eigenvalues of each must be close. 
 
Lemma 2.4. Given two matrices A and B with eigenvalues {αk } and {βk }, respectively, then 
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Proof: Define the difference matrix D = A − B = {dk,j } so that 
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   = Tr(D). 
 
Applying the Cauchy-Schwarz inequality (see, e.g., [22], p. 17) to Tr(D) yields  
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        (2.25) 

 
Taking the square root and dividing by n proves the lemma. 
An immediate consequence of the lemma is the following corollary. 
 
Corollary 2.1. Given two sequences of asymptotically equivalent ma-trices {An} and {Bn} with eigenvalues 
{αn,k } and {βn,k }, respectively, then 
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and hence if either limit exists individually, 
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Proof. Let Dn = {dk,j } = An − Bn. Eq. (2.27) is equivalent to 
 

    1lim 0.
n

Tr D
n
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Dividing by n2, and taking the limit, results in 
 

   
2

210 0n nTr D D
n         2.29 

 
from the lemma, which implies (2.28) and hence (2.27). 

The previous corollary can be interpreted as saying the sample or arithmetic means of the eigenvalues 
of two matrices are asymptotically equal if the matrices are asymptotically equivalent. It is easy to see that if 
the matrices are Hermitian, a similar result holds for the means of the squared eigenvalues. From (2.12) and 
(2.18), 

 
  |Dn|  ||An|| - ||Bn|| 
 

   = 
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if |Dn| n→∞ 0, yielding the following corollary. 
 
Corollary 2.2. Given two sequences of asymptotically equivalent Hermitian matrices {An} and {Bn} with 
eigenvalues {αn,k } and {βn,k }, respectively, then 
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and hence if either limit exists individually, 
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  .     2.31 

 
Both corollaries relate limiting sample (arithmetic) averages of eigenvalues or moments of an 

eigenvalue distribution rather than individual eigenvalues. Equations (2.27) and (2.31) are special cases of the 
following fundamental theorem of asymptotic eigenvalue distribution. 
 
Theorem 2.2. Let {An} and {Bn} be asymptotically equivalent se-quences of matrices with eigenvalues {αn,k } 
and {βn,k }, respectively. Then for any positive integer s the sequences of matrices {As

n} and {Bn
s} are also 

asymptotically equivalent, 
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and hence if either separate limit exists, 
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  .      2.33 

 
Proof. Let An = Bn + Dn as in the proof of Corollary 2.1 and consider 

An
s − Bn

s  �   n Since the eigenvalues of An
s are αn,k

s , (2.32) can be 
written in terms of  n   as 
 

   1 0nn
lim Tr

n
         2.34 

 
The matrix n  is a sum of several terms each being a product of Dn’s and Bn’s, but containing at least 

one Dn  (to see this use the binomial theorem applied to matrices to expand As ). Repeated application of 
Lemma 2.3 thus gives 

 
  0n n nK D          2.35 
 

where K  does not depend on n. Equation (2.35) allows us to apply Corollary 2.1 to the matrices and 
Ds to obtain (2.34) and hence (2.32). 

Theorem 2.2 is the fundamental theorem concerning asymptotic eigenvalue behavior of 
asymptotically equivalent sequences of matrices. Most of the succeeding results on eigenvalues will be 
applications or specializations of (2.33). 

Since (2.33) holds for any positive integer s we can add sums corresponding to different values of s to 
each side of (2.33). This observation leads to the following corollary. 
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