

Review Of Research

MEAN SQUARE ESTIMATION OF THE PARAMETER IN THE U $(\theta, 2\theta)$

H. S. PATIL

Department of Statistics, S. B. Zadbuke Mahavidyalaya Barsi, Maharashtra, India.

ABSTRACT: In the literature, an extensive work on sequential fixed width confidence interval for the parameter of $U(\theta, m\theta)$ model, where m>1 is known, is available. In this article we develop and compare minimum mean square estimation procedures for estimating the parameter θ of $U(\theta, 2\theta)$.

Keywords: Fixed sample size (FSS) procedure; Maximum likelihood estimator (m.l.e); Sufficient statistics; Linear estimator; Minimum distance criteria.

Mathematics Subject Classification (2000): Primary 62L12.

1. INTRODUCTION

The problem of obtaining confidence intervals having a specified width for the parameter in the density $U(\theta)$ $m\theta$), where m>1 is known and $\theta > 0$, has been considered by Patil and Rattihalli (2011) and Patil (2012,2014, 2015). Govindarajulu (2000)has considered the problem of

finding risk-efficient sequential estimation procedure for $U(0, \theta)$ density. For further details on sequential estimation, one may refer to Ghosh et.al (1997).

In this article we propose minimum mean square estimation procedures for estimating the parameter of $U(\theta, 2\theta)$ density. Section 2 contains a linear estimator of θ by using m.l.e. In Sections 3, we propose a linear estimator

using sufficient statistics and its modification based on minimum distance criteria and compares these methods.

2. LINEAR ESTIMATOR USING M.L.E.

Let X_1, X_2 , ... X_n be independent identical distribution (i.i.d) random variables with $U(\theta, 2\theta)$ distribution. Let $X_{n(1)} = min(X_1, X_2, ...X_n)$ and $X_{n(n)} = max(X_1, X_2, ...X_n)$. Note that $X_{n(n)}/2$ is the m.l.e of θ . Let a linear estimator of θ be

$$T_1 = T(X) = \alpha X_{n(n)} / 2 + (1 - \alpha) X_{n(1)}, \ 0 \le \alpha \le 1.$$
 (2.1)

Then mean squared error (MSE) of T_1 is

$$\begin{split} MSE(T_1) &= E \Big[\alpha X_{n(n)} \big/ 2 + (1-\alpha) X_{n(1)} - \theta \Big]^2 \\ &= (\alpha^2 \big/ 4) E(X_{n(n)}^2) + (1-\alpha)^2 E(X_{n(1)}^2) + \alpha (1-\alpha) E(X_{n(n)} X_{n(1)}) + \\ &\qquad \qquad \theta^2 - \theta \alpha E(X_{n(n)}) - 2 (1-\alpha) \theta E(X_{n(1)}) \end{split}$$

We know that

$$\begin{split} E(X_{n(n)}) &= \theta + n\theta/(n+1) = \theta(2n+1)/(n+1) \\ E(X_{n(1)}) &= 2\theta - n\theta/(n+1) = \theta(n+2)/(n+1) \\ E(X_{n(n)}^2) &= \theta^2(4n^2+8n+2)/[(n+1)(n+2)] \\ E(X_{n(1)}^2) &= \theta^2(n^2+5n+8)/[(n+1)(n+2)] \end{split}$$

and $E(X_{n(1)} X_{n(n)}) = \theta^2 (2n^2 + 7n + 5)/[(n+1)(n+2)]$

Substituting these we get,

$$MSE(T_1) = \theta^2 (7\alpha^2 + 10\alpha + 4)/[2(n+1)(n+2)]$$
(2.2)

Note that MSE(T₁) is an increasing function of θ and decreasing function of n. Further for fixed θ , $7\alpha^2+10\alpha+4$ is a convex and has minimum value at $\alpha=5/7$. Hence MSE(T₁) is minimum at $\alpha=5/7$. Thus the minimum MSE linear estimator for θ is

$$T_1 = 5X_{n(n)}/4 + 2X_{n(1)}/7$$
 (2.3)

And MSE $(T_1) = 0.214\theta^2/(n+1)(n+2)$ (2.4)

3. LINEAR ESTIMATOR USING SUFFICIENT STATISTICS

Let a linear estimator for θ based on sufficient statistics $(X_{n(n)}, X_{n(1)})$ be

$$T_2 = \alpha_1 X_{n(n)} + \alpha_2 X_{n(1)} \tag{3.1}$$

Then the MSE of T₂ is

which implies

$$\begin{split} MSE(T_2) &= E[\alpha_1 X_{n(n)} + \alpha_2 X_{n(1)} - \theta]^2 \\ &= \alpha_1^2 \ E(X_{n(n)}^2) + \alpha_2^2 E(X_{n(1)}^2) + 2 \ \alpha_1 \ \alpha_2 E(X_{n(n)} X_{n(1)}) + \theta^2 - 2\theta \alpha_1 E(X_{n(n)}) - 2\theta \alpha_2 E(X_{n(1)}) \end{split}$$

Substituting the expectations obtained in Section 2 and taking derivative w.r.t α_1 we get,

$$0 = 2\alpha_1(4n^2 + 8n + 2) + 2\alpha_2(2n^2 + 7n + 5) - 2(2n^2 + 5n + 2)$$

$$\alpha_1(4n^2 + 8n + 2) + \alpha_2(2n^2 + 7n + 5) = 2n^2 + 5n + 2$$
(3.2)

Similarly by differentiation w.r.t α_2 we get,

$$\alpha_1(2n^2+7n+5) + \alpha_2(n^2+5n+8) = n^2+4n+4$$
 (3.3)

Now solving (3.2) and (3.3) we get,

$$\alpha_1 = 2(n+2)/(5n+9)$$
 and $\alpha_2 = (n+2)/(5n+9)$ (3.4)

Hence the minimum MSE linear estimator of θ is

$$T_2 = \frac{n+2}{5n+9} [2X_{n(n)} + X_{n(1)}]$$
 (3.5)

And

$$MSE(T_2) = \theta^2/(n+1)(5n+9)$$
(3.6)

Note that the MSE of a m.l.e $X_{n(n)}/2$ is $\theta^2/(n+1)(2n+4)$ and MSE of an unbiased estimator $(X_{n(n)}+X_{n(1)})/3$ is $\theta^2/(n+1)(4.5n+9)$. Thus it is clear that for fixed n, the linear estimator T_2 is better than the m.l.e, unbiased estimator and T_1 . Further T_2 can be written as,

$$T_{2} = \frac{4n+8}{5n+9} (X_{n(n)}/2) + \frac{n+2}{5n+9} X_{n(1)}$$

$$= \frac{5n+10}{5n+9} \left[\frac{4n+8}{5n+10} + \frac{n+2}{5n+10} X_{n(1)} \right]$$

$$> X_{n(n)}/2$$

Hence we propose another estimator T_2^* based on minimum distance criteria given by,

$$T_{2}^{*} = \begin{cases} X_{n(1)} & \text{if } T_{2} > X_{n(1)} \\ T_{2} & \text{if } X_{n(n)}/2 < T_{2} < X_{n(1)} \end{cases}$$
 (3.7)

Let a = (n+2)/(5n+9) < 1/3, $T_2 = aX_{n(1)} + 2aX_{n(n)}$. Now the joint distribution of $X_{n(1)}$ and T_2 will be,

$$f(x_1, t) = \frac{n(n-1)}{\theta^n (2a)^{n-1}} [t - 3ax_1]^2, \text{ for } \theta < x_1 < 2\theta \text{ and } 3ax_1 < t < ax_1 + 4a\theta$$
 (3.8)

This can be shown as below.

Figure 3.1: Joint distribution of $X_{n(1)}$ and T_2

 $t = x_{1}$ $t = ax_{1} + 4a\theta$ $t = 3ax_{1}$ $t = ax_{1} + 4a\theta$ $t = 3ax_{1}$ $t = ax_{1}$

Note that $T_2^* = X_{n(1)}$ is in the region A and $T_2^* = T_2$ is in the region B_1U B_2 . Hence from Figure 3.1, it is clear that,

$$MSE(T_2) - MSE(T_2^*) = \int_{\theta}^{4a\theta a\theta/-a} \int_{x_1}^{ax_1+4a\theta} [(t-\theta)^2 - (x_1-\theta)^2] f(x_1, t) dt dx_1$$
 (3.9)

 $4a(a-1)\theta$ 2θ

The integrand on the region A is $[(t - \theta)^2 - (x_1 - \theta)^2] = t^2 - x_1^2 - 2\theta(t - x_1) = (t - x_1)[(t + x_1) - 2\theta] > 0$, since on region A, $t > x_1$ and $(t + x_1) - 2\theta > 2x_1 - 2\theta = 2(x_1 - \theta) > 0$. Hence the right hand side of (3.9) is positive. Thus T_2^* is uniformly better than T_2 .

REFERENCES

- **1.**Ghosh, M., Mukhopadhyay, N. and Sen, P.K.(1997). *Sequential Estimation*. NewYork: Wiley.
- **2.**Govindarajulu Z. (2000). Sequential Risk-Efficient Estimation of the Parameter in Uniform Density. *J. Math. & Math. Sci.*, 23,6:415-423.
- **3.**Patil H.S. and Rattihalli R.N. (2011). Fixed with Confidence Interval for $U(\theta, m\theta)$ Distribution. *Communication in Statistics (Theory and Methods)*, 40:907-915.
- **4.**Patil H.S. (2012). Two-Stage Estimation Procedure for the Parameter of $U(\theta, m\theta)$ Distribution. *Calcutta Statistical Association Bulletin*, Vol. 64; 255-256: 257-263.
- **5.** Patil H.S. (2014). A Purely Sequential Estimation Procedure for the Parameter of U(θ, mθ) Distribution. *Calcutta Statistical Association Bulletin*, Vol. 66; 263-264: 235-240.
- **6.** Patil H.S. (2015). An Adoptive Sequential Procedure for the Parameter of $U(\theta, m\theta)$ Distribution. Submitted to *Calcutta Statistical Association Bulletin* for possible publication.