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ABSTRACT 
 The area of limited optimization methods of three-term 
conjugate gradient (CG) technique which is mainly based on Dai Liao (DL) 
formula. The new proposed technique satisfies the conjugate properties 
and the descent conditions of Karush-Kuhn Tucker (K.K.T.). Our planned 
limited technique uses strong wolf line search conditions with some 
assumptions. We have a tendency to prove the global convergence of 
new planned techniques. (30-thirty) Comparison of points for limited 
optimization problems ensures the effectiveness of the new planned 
formula. 
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INTRODUCTION 

All policies for limited issues will be classified into (2) basic categories; In particular, direct and 
indirect ways. Some special optimizations transform uncontrolled optimization type problems into 
constrained problems by creating unrelated sub-problem paths for the latter type of square measurement 
for indoor and outdoor penalty function techniques. The main simple and robust technique for the earlier 
technique known as Sequential Unconstrained Minimization Technique (SUMT)required optimization issues 
with limited inequality this way… 

 
min .ݏ(ݔ)݂ .ݐ ܿ(ݔ) ≥ 0, ݅ = 1, … ݉ 

 
Equation – 1 

The problem is to recreate the function of the figure in an arbitrary minimalist technique 
 

,ݔ)߮ (ݑ = (ݔ) ݂ +  (ݔ)ܤߤ 
 
Equation – 2 
Where, 

→ ߤ 0and(ݔ)ܤ is defined by equation 1 
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(ݔ)ܤ = 
1

ܿ(ݔ)



ୀଵ

 

 
Equation – 3 

So, we can write the equation – 2 as follows… 

,ݔ)߮ (ݑ = (ݔ) ݂ + ߤ 
1

ܿ(ݔ)



ୀଵ

 

 
Equation – 4 

There are derivatives of these functions∇݂(ݔ) and ∇ܿ(ݔ), for ݅ = 1, … , ݊ are linear independent so 
that, 

,ݔ)߮∇ (ݑ = (ݔ) ݂∇ + ߤ 
1

ܿ(ݔ)



ୀଵ

∇ ܿ(ݔ) 

 
Equation – 5  

Now we turn to the second part parallel to the importance of the previous part, which is the 
arbitrary optimization technique and let us know the problem (2), where ߮: ܴ → ܴ the real-valuable 
integral and scalable derivative function. This is repetitive 

 
ାଵݔ = ݔ +  ݀ߙ

Equation – 6 
Where, 
 : = it is step length and the new search direction ݀ାଵ isߙ 
 

݀ାଵ =  ቊ
−∇߮൫ݔାଵ,ߤାଵ൯  ݂ݎ ݇ = 0

−∇߮൫ݔାଵ,ߤାଵ൯ + ݇ ݎ݂  ݀ߚ ≥ 1
� 

 
Equation – 7 

At the current point is the value of the derived functionग़(ݔାଵ) = ,ାଵݔ)߮∇ ߚ ାଵ) andߤ is a 
positive scalar called the conjugate gradient parameter. 

In existing convergence analysis and implementation of CG techniques, weak wolf conditions are 
defined as: 

 

߮൫ݔାଵ,ߤାଵ൯ − ߮൫ݔ,ߤ൯ ≤ ൯்ߤ,ݔ∇൫ߙߜ
݀ 

 
Equation – 8 

∇൫ݔାଵ,ߤାଵ൯்
݀ ≥ ൯்ߤ,ݔ൫߮∇ߪ

݀  
 
Equation – 9 

and 0 < ߜ < ߪ < 1 
 A strong wolf situation by improving conditions equation [7] consists of equation (8) and 

ቚ∇߮൫ݔାଵ,ߤାଵ൯்
ቚ ≤ ൯்ߤ,ݔ൫߮∇ߪ−

݀ 

 
Equation – 10 

Moreover, sufficient descent property i.e. 
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݀ାଵ
்  ߮൫ݔାଵ,ߤାଵ൯ ≤ −ܿฮ∇߮൫ݔାଵ,ߤାଵ൯ฮଶ

 
 
Equation – 11 
Modified Three Term CG Technique: 

Several researchers have provided various updates that are appropriate for the Dai-Liao (DL) CG-
method parameters: 

 

ߚ
 =  

݃ାଵ
் ݕ) − (ݏݐ

ܵ
ݕ்

 

 
Equation – 12  

Recall the work of Leverage and Pintelus who forwarded new updates to the parameters ߚ
  which 

were based on the revised second equation and which they replaced ݕ with this new one. Other 
researchers, e.g. Babai-Kafaki and Ghanbari derive two modified CG-methods based on Perry's work in their 
work; They got better numerical results than the original result given by DL. Researchers continued various 
updates of DL parameters to get some suitable formulas. 

 

݀ାଵ = −݃ାଵ +
݃ାଵ

் ݕ) − ݏݐ )
ܵ

ݕ்
ݏ −

݃ାଵ
் ݀

ܵ
ݕ்

ݕ) − ,(ݏݐ ݐ > 0 

 
Equation – 13 

This situation is a satisfactory direction(݀ାଵ
் ݃ାଵ ≤ −ܿଵ‖݃ାଵ‖ଶ) for all k. now exploitation of 

equation -13 in the limited CG-technique mentioned in the yield with equation 1 – equation 4. 
 

݀ାଵ = −∇߮൫ݔାଵ,ߤାଵ൯ +
∇߮൫ݔାଵ,ߤାଵ൯்(ݕ − (ݏݐ

ܵ
ݕ்

−
ܵ

்∇߮൫ݔାଵ,ߤାଵ൯

ܵ
ݕ்

ݕ) −  (ݏݐ

 
Equation – 14  

By updating this formula using the improved technique of Dai-Liao CG in Equation-14, we obtain: 
 

݀ାଵ =
ܵ

ݕ)் − (ݏݐ
ܵ

ݕ்
߮൫ݔାଵ,ߤାଵ൯ +

∇߮൫ݔାଵ,ߤାଵ൯்(ݕ − (ݏݐ

ܵ
ݕ்

−
ܵ

்∇߮൫ݔାଵ,ߤାଵ൯
ܵ

ݕ்
ݕ) −  (ݏݐ

 
Equation – 15  

This is as follows when rewriting a new search direction 
 

݀ାଵ = −ܳାଵ∇߮൫ݔାଵ,ߤାଵ൯ 
 
Equation – 16 
Where, 

ܳାଵ =
1

ܵ
ݕ்

ൣ ܵ
ݕ)் − .(ݏݐ ܫ + ൫ݕܵ

் − ܵݕ
்൯൧ 

 
Equation – 17 

Since ݕ ܵ
் > 0(Due to the strong wolf condition), we get through this inequality and the half 

Newton condition: 
ܳାଵݏ = ݕ ⇒ ܵ

்ܳݏ > 0 
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Equation – 18 
New Theorem: 

The new direction ݀ାଵ in Equation-15 satisfies the actual descending position in Equation-11. 
 
Proof: 

Now multiply each side of equation-15 by ∇߮൫ݔାଵ,ߤାଵ൯ which is the tendency to get if it is capable 
of random optimization 

 

∇߮൫ݔାଵ,ߤାଵ൯
்

݀ାଵ

= −
ݕ) − )்ܵݏݐ

ܵ
ݕ்

ฮ∇߮൫ݔାଵ,ߤାଵ൯ฮଶ
+

ݕ) − ାଵ൯ߤ,ାଵݔ)்∇߮൫ݏݐ
ܵ

ݕ்
∇߮൫ݔାଵ,ߤାଵ൯ݏ

−
ܵ

்∇߮൫ݔାଵ,ߤାଵ൯

ܵ
ݕ்

∇߮൫ݔାଵ,ߤାଵ൯(ݕ − (ݏݐ

= − ቈ
ݕ

ݏ்

ݕ
ݏ்

ฮ∇߮൫ݔାଵ,ߤାଵ൯ฮଶ
− ݐ

‖ܵ ‖ଶ

ݕ
ݏ்

ฮ∇߮൫ݔାଵ,ߤାଵ൯ฮଶ

=  ቈ−1 + ݐ
‖ܵ‖ଶ

ݕ
ݏ்

 ฮ∇߮൫ݔାଵ,ߤାଵ൯ฮ
ଶ

 

 
Equation - 19 

Let ݏ =  ݀ߙ
 

∇߮൫ݔାଵ,ߤାଵ൯்
݀ାଵ =  ቈ−1 + ݐ

‖ܵ‖ଶ

ݕ
ݏ்

 ฮ∇߮൫ݔାଵ,ߤାଵ൯ฮଶ
=  ቈ−1 + ߙݐ

‖ ܵ ‖ଶ

ݕ
ݏ்

 ฮ∇߮൫ݔାଵ,ߤାଵ൯ฮଶ
 

 
Equation – 20  

Scalar ߚ
  is known, it means ݀ = −݃ , moreover, when the other end of the direction is 

multiplied ݕ we get: 
 

ݕ
்݀ = ∇߮൫ݔାଵ,ߤାଵ൯்

݀ − ∇߮൫ݔ,ߤ൯்
݀ =  ∇߮൫ݔାଵ,ߤାଵ൯்

݀ + ‖݀‖ଶ ≥ ‖݀‖ଶ 
 
Equation – 21 

−∇߮൫ݔ,ߤ൯
்

݀ାଵ ≤ ቈ−1 + ߙݐ
‖݀‖ଶ

‖݀‖ଶ ฮ∇߮൫ݔାଵ,ߤାଵ൯ฮ
ଶ

≤ [−1 +  ାଵ൯ߤ,ାଵݔ]∇߮൫ߙݐ
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Equation – 22 
 Where ܿ = −(1 −  ) is a positive constant, now we have following equationߙݐ

∇߮൫ݔାଵ,ߤାଵ൯்
݀ାଵ ≤  −ܿฮ∇߮൫ݔାଵ,ߤାଵ൯ฮଶ

൮∇݂(ݔାଵ) − ାଵߤ 
1

ܿ
ଶ(ݔାଵ)



ୀଵ

∇ ܿ(ݔାଵ)൲

ௗೖశభ

்

≤ −ܿ ∇݂(ݔାଵ) + ାଵߤ 
−1

ܿ
ଶ(ݔାଵ)



ୀଵ

∇ ܿ(ݔାଵ)

ଶ

൮∇݂(ݔାଵ)

− ାଵߤ 
1

ܿ
ଶ(ݔାଵ)



ୀଵ

∇ ܿ(ݔାଵ)ቍ

ௗೖశభ

்

≤ −ܿ

⎝

⎜
⎛

൫∇݂(ݔାଵ)൯்
(ାଵݔ)݂∇ − ்(ାଵݔ)݂∇ାଵߤ2 

1

ܿ
ଶ(ݔାଵ)



ୀଵ

∇ ܿ(ݔାଵ)∇ ܿ(ݔାଵ)

+ ାଵߤ
ଶ ൮

1

ܿ
ଶ(ݔାଵ)



ୀଵ

∇ ܿ(ݔାଵ)் 
1

ܿ
ଶ(ݔାଵ)



ୀଵ

∇ ܿ(ݔାଵ)൲

⎠

⎟
⎞

 

 
Equation – 23 

 
Which we can written in differently 
 

൮∇݂(ݔାଵ) − ାଵߤ 
1

ܿ
ଶ(ݔାଵ)



ୀଵ

∇ ܿ(ݔାଵ)൲

ௗೖశభ

்

≤ (ାଵݔ)݂∇]ܿ− −  ଶ[(ାଵݔ)ܤ∇ାଵߤ

 
Equation – 24 

and ܤ(ݔାଵ) is the Barrier function at point ݇ + 1 

ାଵߤ =
ߤ

10
, ߤ > 0 

 
Equation – 25  

So, when ߤାଵ and to get a minute of the function ݂(ݔ) we take the function limit ߮(ݔ,  when (ݑ
ߤ → 0 in the form: 

ାଵ்݀(ାଵݔ)݂∇ ≤  ଶ‖(ାଵݔ)݂∇‖ܿ−
 
Equation – 26 

We get the direction of our new algorithm needed, the right slope. 
The new direction of ݀ାଵ is defined in equation – 15 is satisfying the conjugacy condition.  
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Proof: 
 Let, 
ݕ   = ݕ) −  (ݏݐ

ݕ
்݀ାଵ =

ݕ
்

ܵ

ݕ
ݏ்

ݕ
்∇߮൫ݔାଵ,ߤାଵ൯ +

ݕ
்∇߮൫ݔାଵ,ߤାଵ൯

ݕ
ݏ்

ݕ
்

ܵ −
ݏ

்∇߮൫ݔାଵ,ߤାଵ൯
ݕ

ݏ்
ݕ

 ݕ்

 
Equation – 27 

ݕ
்݀ାଵ =

‖ଶݕ‖

ݕ
ݏ்

ܵ
்∇߮൫ݔାଵ,ߤାଵ൯ = −∅ܵ

்∇߮൫ݔାଵ,ߤାଵ൯ 

 
Equation – 28 
 
Where, ∅ > 0 and condition is = ݕ

்݀ାଵ = ݐ ܵ
்݃ାଵ 

 
Where, 

݃ାଵ = ∇߮൫ݔାଵ,ߤାଵ൯ 
 
Equation – 30 
New Theorem Convergence at Global: 

Consider the new three-term CG-technique equation 15 which is a satisfactory equation -13 and 
assume that the size of the step completes -equation -8 and equation -10. 

 
lim

→ஶ
ฮ∇߮൫ݔାଵ,ߤାଵ൯ฮ = 0 

 
Equation – 33 
Proof: 

The Direction of New Search is: 
 

݀ାଵ ≤
ݕ| − ݏݐ |‖ܵ‖

‖‖‖ܵݕ‖ ฮ∇߮൫ݔାଵ,ߤାଵ൯ฮ +
ݕ| − ‖|‖ܵݏݐ

‖‖‖ܵݕ‖ ฮ∇߮൫ݔାଵ,ߤାଵ൯ฮ

+
ฮ∇߮൫ݔାଵ,ߤାଵ൯ฮ‖ܵ‖|ݕ − |ݏݐ

‖‖ݕ‖ ܵ‖ ≤ (‖ݏ‖ݐ‖ݕ‖) ቆ
3ฮ∇߮൫ݔାଵ,ߤାଵ൯ฮ

‖ݕ‖ ቇ 

Equation – 34 
From Lipschitz condition and: 

‖ଶܵ‖ߤ ≤ ݕ
்ܵ ≤ ‖ܮ ܵ‖ ≤ ‖ܵ‖ܮ) + ‖ݐ ܵ‖) ൬

ݕ3
‖ߤ ܵ‖൰ ≤ ܮ) + (ݐ ൬

ݕ3
ߤ

൰ =  ݎ

 
Equation – 35 
Due to that by taking summation of each direction of search we get following: 
 


1

‖݀ାଵ‖ଶ
ஹଵ

≥
1
ݎ

 1 = ∞
ஹଵ

 

 
This means that the equation 33 is proved. 
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