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ABSTRACT

The area of limited optimization methods of three-term / o i TN
conjugate gradient (CG) technique which is mainly based on Dai Liao (DL) T iy
formula. The new proposed technique satisfies the conjugate properties o]
and the descent conditions of Karush-Kuhn Tucker (K.K.T.). Our planned '
limited technique uses strong wolf line search conditions with some
assumptions. We have a tendency to prove the global convergence of
new planned techniques. (30-thirty) Comparison of points for limited -4
optimization problems ensures the effectiveness of the new planned
formula. k
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INTRODUCTION

All policies for limited issues will be classified into (2) basic categories; In particular, direct and
indirect ways. Some special optimizations transform uncontrolled optimization type problems into
constrained problems by creating unrelated sub-problem paths for the latter type of square measurement
for indoor and outdoor penalty function techniques. The main simple and robust technique for the earlier
technique known as Sequential Unconstrained Minimization Technique (SUMT)required optimization issues
with limited inequality this way...

min f(x)s.t.cj(x) =0, i=1,..m

Equation—-1
The problem is to recreate the function of the figure in an arbitrary minimalist technique

p(x,u) = f (x) + uB(x)
Equation —2

Where,
u — 0andB(x) is defined by equation 1
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m

1
B(x) = Z ¢i(x)

j=1

Equation -3
So, we can write the equation — 2 as follows...

m
1
xX,u) = x) + Z
PO = () +h )
j=1
Equation -4
There are derivatives of these functionsVf(x) and Vc¢;(x), for i = 1, ...,n are linear independent so
that,
o 1
Vo(ru) = Vf (1) +p ) ——Vg;(x)
L cj(x)
j=1
Equation -5

Now we turn to the second part parallel to the importance of the previous part, which is the
arbitrary optimization technique and let us know the problem (2), where @:R™ — R the real-valuable
integral and scalable derivative function. This is repetitive

X1 = X + apdy

Equation—6
Where,
ay =it is step length and the new search direction d 4 is:
_ { _V¢(xk+1,ﬂk+1) fork =20
k+1 =
Vo (xs1,ik+1) + Brdi fork =1
Equation -7

At the current point is the value of the derived functiong(xx4+1) = V@ (Xr41, Uks1) and Byis a
positive scalar called the conjugate gradient parameter.

In existing convergence analysis and implementation of CG techniques, weak wolf conditions are
defined as:

(X rer1) — @ (xipr) < 5akv(xk,ﬂk)Tdk

Equation -8
V(xk+1,ﬂk+1)Tdk 2 UVQD(xk,Mk)Tdk

Equation—-9
and0<d<o<1
A strong wolf situation by improving conditions equation [7] consists of equation (8) and

|V§0(xk+1,ﬂk+1)T| < —UVQU(xk,Mk)Tdk

Equation —10
Moreover, sufficient descent property i.e.
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d£+1 ¢(xk+1,ﬂk+1) < _C||V€0(xk+1,ﬂk+1)”2

Equation —11
Modified Three Term CG Technique:

Several researchers have provided various updates that are appropriate for the Dai-Liao (DL) CG-
method parameters:

DL _ 917;+1(Yk - tsk)
* Sk Yk

Equation —12

Recall the work of Leverage and Pintelus who forwarded new updates to the parameters ﬁ,?L which
were based on the revised second equation and which they replaced y, with this new one. Other
researchers, e.g. Babai-Kafaki and Ghanbari derive two modified CG-methods based on Perry's work in their
work; They got better numerical results than the original result given by DL. Researchers continued various
updates of DL parameters to get some suitable formulas.

917;+1(3’k — tsy) _ 917;+1dk (
SIZYk k S£Yk

dg+1 = —Gr+1 + Vi = tS), t>0
Equation—13

This situation is a satisfactory direction(dr,,gx+1 < —C1llgr+111%) for all k. now exploitation of
equation -13 in the limited CG-technique mentioned in the yield with equation 1 — equation 4.

T
V¢(xk+1,ﬂk+1) (Vi — tsg) B 51€V¢(xk+1,ﬂk+1)
5133’1( 5133’1(

diyr = —V¢(xk+1,ﬂk+1) + (Vi — tsg)

Equation — 14
By updating this formula using the improved technique of Dai-Liao CG in Equation-14, we obtain:

Sk i — tsi)

T
V¢(xk+1,ﬂk+1) (Y — tsk) _ 51€V¢(xk+1,ﬂk+1) (
S£Yk

Sk Vie Sk Vi

diyr = ¢(xk+1,ﬂk+1) + Vi — tSi)

Equation — 15
This is as follows when rewriting a new search direction

diyr = _Qk+1v¢(xk+1,ﬂk+1)

Equation — 16
Where,
1
Q1 = T [SZ (Vi — tsi)- 1+ (v SE — Skyg)]
k Yk
Equation —17

Since y, ST > 0(Due to the strong wolf condition), we get through this inequality and the half
Newton condition:

Qr+15k = Yk = Sk Qs > 0
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Equation — 18
New Theorem:
The new direction dj,1 in Equation-15 satisfies the actual descending position in Equation-11.

Proof:
Now multiply each side of equation-15 by Vgo(xkﬂ,yk“) which is the tendency to get if it is capable
of random optimization

V¢(xk+1,ﬂk+1)Tdk+1
Vi — tsK)'S Vi — tsi) TV (xppq 1t
Z_#HWD(MH,M}(H)”Z ud £ = (i e V(X4 1 tir1)Sk
S Yk Si Vi
Skv
o ¢(ka+1,#;¢+1) V¢(xk+1,ﬂk+1)(3’k — tSy)
Sic Yk
s IIS II
== [yk : ||V§0(xk+1 ”k+1)” k ||V§0(xk+1 ﬂk+1)”

IS 112
= [_1+ . ]||V¢(xk+1ﬂk+1)”
Yk Sk

Equation - 19
Let Sk = akdk

T Il k” Il k”
Vo (Xpes 1) diesr = [—1 t+t JTs Ve (a1, ﬂk+1)” =1+ tay s Ve (x4, ﬂk+1)”
Equation — 20
Scalar /)’,?L is known, it means dj = —gy, moreover, when the other end of the direction is

multiplied y, we get:

T T T
yidi = Vo (e pisr) di — Vo (e pi) die = Vo(Xprr pesr) dic + Ndill? = lldylI?

Equation —21

lldyII?
-1+ tay IIdI,:IIZ] ||V§0(xk+1,ﬂk+1)||2 < [-1+ tar]Ve(opss ics1)

—VQU(xk,ﬂk)TdkH <
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Equation — 22
Where ¢ = —(1 — tay,) is a positive constant, now we have following equation
T
o 1
T 2
V¢(xk+1,ﬂk+1) diyr < _C||V€0(xk+1,ﬂk+1)” Vf(xks1) — ﬂk+1z 2( )ch(xk+1)
k+1
i1
2
o -1
< —¢|VfCarn) + tters ). V6 Gern) | | Vf Gairn)
= G (Xk+1)
m T
Y Ve o)
I"lk+1 A C]-Z(.Xk+1) ] k+1
Jj=1
dk+1
- 1
T
< —¢ | (Vfiee)) U (esn) = 20101 Vf (icen)” ) ——— 6 (s DV (i)
= G (Xk+1)
S
+ ﬂ]2(+1 Z 2 VC] (xk+1) Z 2 VC] (xk+1)
- (k1) (
Equation —23
Which we can written in differently
T
S
U/ () —Mk+1z Ay 0 | el G) — VB G
k+1
A1

Equation — 24
and B(xy41) is the Barrier function at point k + 1

Uk
0
Hier1 = 77 Ho >

Equation — 25
So, when py,q and to get a minute of the function f(x) we take the function limit ¢ (x,u) when
u = 0inthe form:
V(s 1) disr < —cllVF Qe ) 112

Equation — 26
We get the direction of our new algorithm needed, the right slope.
The new direction of d, ; is defined in equation — 15 is satisfying the conjugacy condition.
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Proof:
Let,
y = (yx — tsg) ( ) ( )
~T ~T T
- VieSk Ve Vo X1, lier1) S Vo X1 lks1) -
Frdisr = T—Y£V¢(xk+1,ﬂk+1) + T Vi Sk — T FrVk
Vi Sk Vi Sk YViSk
Equation — 27
. Isl2 .
Vi dis1 = ESKV¢(xk+1,ﬂk+1) = —Q)SKVQU(ka,MkH)
k
Equation — 28

Where, @ > 0 and condition is = yI dy 41 = tST g 41

Where,
Jr+1 = Vo (xk+ 1,Mk+ 1)

Equation — 30
New Theorem Convergence at Global:

Consider the new three-term CG-technique equation 15 which is a satisfactory equation -13 and
assume that the size of the step completes -equation -8 and equation -10.

;Lngo||v¢(xk+1,ﬂk+1)” =0
Equation —33
Proof:
The Direction of New Search is:

|y — tsic ISkl
1y 1Sk I

ke — Skl ISkl

|
dk+1 < ||V§0(Xk+1’l.lk+1)” + 4 ”yk””Sk” ||V§0(xk+1,llk+1)”

IV Cresn, ticr 1) | 11Sell [yie — tsiel
ly xSkl

3”V§0(xk+1,ﬂk+1)”>

< (||yk||tllsk")< Iyl

Equation — 34
From Lipschitz condition and:
3y

3y
ulISell? < yTSe < LISl < (LISl + ¢l Sl (—) <(L+0) (—) =7
wll Skl U

Equation —35
Due to that by taking summation of each direction of search we get following:

PTARTETI

—_— = 00
7=

= ”dk+1” rkz1

This means that the equation 33 is proved.
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