
 ISSN 2249-894X                             Impact Factor : 3.1402 (UIF)               Volume - 5 | Issue - 9 | June - 2016  

________________________________________________________________________________________ 
Available online at www.lbp.world 

1 
 

REVIEW OF RESEARCH 
________________________________________________________________________________________ 
                                                                                                                                                               

                                                                                                                                                        
 

APPLICATIONS OF METRIC SPACES 
 

N. Jayasree 
Assistant Professor in Mathematics, V.T.M.NSS College, Dhanuvachapuram, 
Thiruvananthapuram, Kerala. 
 

 

 
 
 
ABSTRACT 

Many of the discussions in several variable calculus is almost identical to the corresponding 

argument in one variable calculus, especially argument concerning convergence and continuity. We can 

develop a general notion of distance that covers the distances between numbers, vectors, sequences, 

functions, sets and much more. Within this theory we can define and prove theorems about convergence and 

continuity, compactness and boundedness.  

KEYWORDS: Completeness, Continuous Functions, Extension Theorem, Uniform Continuity, Homeomorphism, 

Separated Sets, Totally Boundedness, Compactness. 

 
Definition    

 A function is called a contraction when there is a constant 0 ≤k≤1 such that  

  ∀ x,y ∈ X,           d(f(x),f(y)) ≤kd(x,y) 

It follows that f is continuous, because 

  D(x,y) <δ:= ε/k ⇒d(f(x),f(y)) <ε 

Theorem  

 Let x be a complete metric space, and suppose that f: X→X is a contraction map. Then f has a unique 

fixed-point x =f(x) 

Proof  

 Consider the iteration xn+1=f (xn) with x0=a any point in X. note that, 

  D (xn+1, xn) =d (f (xn), f (xn-1) ≤ kd (xn, xn-1) 

 

Hence, by induction,  

  D (xn+1, xn) ≤knd(x1, x0) 

The (xn) is a Cauchy sequence since we get, 
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 D (xn, xm) ≤d (xn, xn-1) +…+d (xm+1, xm) 

 ≤ (kn-1 +…+km) d(x1, x0)≤
𝑘𝑚

1−𝑘
d(x1-x0) 

Which converges to 0 as n→∞ 

Hence xn→x and by continuity of f,  

  X= lim𝑛→∞ 𝑥𝑛+1 

  =lim𝑛→∞ 𝑓(𝑥𝑛  ) 

  =f (lim𝑛→∞ 𝑥𝑛 ) 

  =f(x) 

Moreover, the rate of convergence is given by 

  D (xn, x) ≤
𝑘𝑛

1−𝑘
𝑑 𝑥, 𝑥0  

Suppose there are two fixed points x=f(x) and y=f(y); then 

D(x, y) =d (f(x), f(y)) 

≤kd(x) 

So that d(x, y) =0 

Since k<1 

Completeness  

 A metric space (x, d) is said to be complete if every Cauchy sequence in X is convergent. 

In other words (x, d) is a complete metric space if, whenever the sequence {xn} in X is such that d (xm, xn) →0 

as m, n →∞ there exists an x ∈X with d (xn, x) →0 as n→∞. 

Example  

 Complete metric spaces, 

1. The usual metric space Ru and Cu are complete. 

2. The discrete metric space Xd is complete 

3. The unitary space Cn is a complete metric space 

Incomplete metric spaces, 

i. The space Qu with the usual metric of absolute value is not complete. 

ii. The metric space (X,), where x=] 0, 1] and d is the usual metric on x, is not complete. 

iii. The space p [a, b] of all polynomials defined on [a, b] with uniform metric d ∞ is not complete. 

Theorem  

 Let (y, dy) be a subspace of a metric space (x, d). Then y is complete ⇒ y is closed 

Proof  

 To prove that y is closed, let x be a limit point of y. then, every open sphere centred on x contains 

points of y. in particular, the open sphere S1/n (x), where n is a positive integer, contains a point xn of y, 
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other than x. thus {xn} is a sequence in y such that, xn→x in X since d(xn,x)< 1/n. let the sequence ,xn} is a 

Cauchy sequence in x and hence in y. but y being complete, x ∈ y. 

 Hence y is closed. 

Dense sets and Separable spaces. 

 Let (X, d) be a metric space and A ⊂X. the set, A is said to be dense in x if Ā=X. 

 A metric space (x, d) is said to be separable if it has a countable subset which is dense in X. 

Examples  

i. The usual metric space Ru is separable since the subset Q ⊂R is countable and dense in R. 

ii. The usual metric space Cu is separable since the subset, 

S= {a+ib: a, b, ∈ Q} 

Is countable and S=c. 

iii. The Euclidean space Rn and the unitary space Cn are separable. 

iv. The space+ p, ≤p≤∞, is separable. 

 Continuous functions  

 Let (x, dx) and (y, dy) be metric spaces. A function f: X →Y is continuous at C ∈X if for every ε>0 there 

δ>0 such that 

Dx (x,c)<δ implies that dy (f(x)), fc))<ε 

The function is continuous in x if it is continuous at every point of x. 

Example  

i. In a metric space (X,d), the identity function I: X→X is continuous. 

ii. Let f:*0,1+ →R be the function given by, 

F(x) = 
0  , 0 ≤ 𝑥 ≤ 1

1, 𝑥 = 1   

 Then, f is continuous in [0, 1] except at x=1. 

iii. A function f:R2 →R, where R2is equipped with the Euclidean norm |ll| and R with the 

absolute value norm l.l, is continuous at c ∈R2 if ||x-cl|<δ implies that lf(x)-f(c) l<ε 

Explicitly, if 

 X=(x1, x2), c= (c1, c2) and f(x) = (f1(x1, x2), f2(x1, x2)) 

This condition reads: 

  (𝑥1 − 𝑐1)2 + (𝑥2 − 𝑐2)2 < 𝛿 

 

Implies that  

  |f(x1, x2)-f (c1, c2)|<ε 
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Theorem  

 A function f: x→y is continuous on x if and only if f-1(v) is open in x for every open set v in y. 

Proof  

 Let f be a continuous function and let v be an open set in y. we shall prove that U=f-1(v) is open in x. 

let x be any point of U. then f(x) ∈V, which is open. Hence  

  F(x) ∈B ε (f(x)) ⊂V 

And so there exists  

  .δ>0 fBδ(X) ⊂Bδ (f(x)) ⊂V. 

In other words, there exists  

   .δ>0 B δ(x) ⊂f-1 (v) =u 

Hence f-1(v) is open. 

Conversely, assume that f-1(v) is open in x whenever v is open in y 

Let x ∈X be arbitrary and ε> 0 be given, then f(x) ∈y and Bε(f(x)) is an open set. Then f-1 Bε(f(x)) is open in x . 

I.e., there exists 

  .δ>0 x ∈Bδ(x) ⊂f-1 Bε (f(x)) 

⇒ there exists 

  .δ>0fBδ(X) ⊂Bε (f(x)) 

As required  

 This verifies that f is continuous at x. hence f is continuous. 

Theorem  

 If f is continuous if and only if, 

 ( lim
𝑛→∞

𝑋𝑛) = lim𝑛→∞ 𝑓(𝑋𝑛) 

Proof  

 Let f be a continuous function and let (xn) be a sequence converging to x in the domain. We shall 

prove that f (Xn) →f(x) in the co-domain as n →∞. Consider the neighbourhood Bε (f(x)) of f(x). Since f is 

continuous 

There exists 

 .δ > 0fBδ(x) ⊂Bε (f(x)) 

But Xn→x means there exists 

 N>0 n>N ⇒Xn∈Bδ(x) 

 ⇒f(Xn) ∈fBδ(x) ⊂Bε(F(x)) 

Conversely, suppose f is not continuous, then there is a point x such that there exists 

 .ε>0∀δ>0 fBδ(x) ⊂Bε(F(X)) 

In particular there exists 
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 .ε>0 ∀n f B1/n (x) ⊂Bε(f(x)) 

∴ we can find points Xn∈B1/n (x) for which  

  F(Xn) ∈ B𝜀(f(x))  

              i.e., f(Xn) →f(x) while Xn →X  

Extension Theorem 

If   X   and    Y be any non-empty sets, A ⊂ X and f:A→Y  be a function. Then, g: X →Y is called an extension of 

f to x if f(x) = g(x), ∀ x ∈ A and f is called the restriction of g to A, denoted by 
𝑔

𝐴  or g A.  

Uniform Continuity 

      Let (X,dx) and (Y,dy) be metric spaces. A function f:X→Y is uniformly continuous on X if for every ε >0 

there exists δ> 0 such that  

                                                 Dx (x,y) <δ⇒ dy ( f(x), f(y) ) <ε 

Example 

      Let f: R→R by f (x) =X2. It is easy to verify that f is continuous. We shall prove that f is not uniformly 

continuous. Then there exists an ε > 0 for which no δ works.  Take ε = 1. Let δ > 0 be given. Let  

                                         X1=
𝛿

2
   + 

1

𝛿
, X2 = 

1

𝛿
 

Then  

                                          |X1  X2| = 
𝛿

2 
<δ  

But,   

                                          |f(x1) - f (x2) | = |(
𝛿

2
+ 

1

𝛿
 ) 2  -

1

𝛿2
 |   

= |
𝛿2

4 
 +1|  

= 
𝛿2

4
 + 1 >1  

Thus, whatever δ may be, there exists x1, x2∈ R such that |x1 – x2 | < δ, but |f (x1) –f (x2)|>1 .  

Homeomorphism  

Let (X, d) and (Y, P) be teo metric spaces. A function f: X →Y is said to be a homeomorphism if   

i. f is bijective  

ii. f is continuous  

iii. f¯1 is continuous   

If a homeomorphism from X to Y exists, we say that the spaces X and Y are homeomorphic.   

Examples  

i. The metric space [0,1] and [0,2] with the usual metric are homeomorphic. Indeed, ifg f(x) = 2x, then f is 

a homeomorphism of [0,1] onto [0,2].  

ii. The usual metric space Ruand the discrete metric space Rdare not homeomorphic.   
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Separated Sets  

Let (X,d)  be a metric space and A,B ⊂ X . The sets A and B are sais to be separated if A ∩ B = Ø and Ā∩ B = Ø.  

Examples  

i. In the usual metric space Ru, the sets A = ]0,1[ and B = ]1,2[ are separated.  

ii.  In general, any two disjoint sets in Rd are separated.  

Connectedness A = B U C and each subset can be covered exclusively by an open set.  

i.e., B ⊆ U, C ∩ U = Ø  

C ⊆ V, B ∩ V = Ø 

A set is called connected otherwise.  

Examples 

i. Any subset of natural numbers is disconnected except the single points {n} and the empty set. 

ii. The set of rational numbers Q is disconnected.  

                                                       i.e., Q⊆ (–∞,√2) U (√2,∞)  

Totally Boundedness  

A set B is totally bounded with when ∀ε> 0 there exists a1, ……, aN 

  B ⊆  𝑎𝑖 𝑁
𝑖=1  

i.e., a set is totally bounded when it can be covered by a finite number of ε - balls, however small their radii 

ε.  

Examples  

          The set [0,1] is totally bounded because it can be covered by the balls Bε (nε) for n= 0,… … . , N where N 

>
1

𝜀
 .  

Theorem  

            Let (X,d) be a metric space. If X is totally bounded, then X is bounded.  

Proof 

Since X is totally bounded, for each ε> 0, it has a finite ε – net, in particular, it has a finite 1 – net A.  

                                                 Let A = ,a1, a2, … … … … , aN 

Then   

 

                                             X =   𝑆1 𝑎𝑖 𝑁
𝑖=1  

                 Since finite union of bounded sets is bounded, it follows that X is bounded.  

Compactness  

A set K is said to be compact if   

                                             K ⊆ 𝐵𝜀𝑖 𝑎𝑖  ⟹  Ǝ 𝑖 = 𝑖 1𝑖 ,… … …, iN 

i.e., K ⊆ 𝐵𝜀𝑖𝑘(𝑎𝑖𝑘)𝑁
𝐾=1  
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Examples 

    The set [0,1] is not compact. For example, the cover of balls B1–
1

𝑛   
 (0) for n= 2, … … has no finite 

subcover. Similarly, the sets R and not compact. On the other hand, we will soon see that the sets [a, b] are 

compact in R.   

Theorem 

Let K be a compact metric space and Y a metric space. If f: K →Y is a continuous function, then f(K) is a 

compact subset of Y. 

Proof 

Let Ai be an open cover for f(K) . We shall prove that a finite subcollection of them still covers f (K).  

From   

                                                                            F(K) ⊆ 𝐴𝑖𝑖  

We can deduce  

                                                                    K ⊆ f ¯1  𝐴𝑖𝑖 =   𝑓¯1𝑖  Ai   

     But f¯1 Ai are open sets since f is continuous  

∴   𝑇𝑒 𝑟𝑖𝑔𝑡 𝑎𝑛𝑑 𝑠𝑖𝑑𝑒 𝑖𝑠 𝑎𝑛 𝑜𝑝𝑒𝑛 𝑐𝑜𝑣𝑒𝑟 𝑜𝑓 𝐾 , 𝑤𝑖𝑐 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 . 

∴   The finite number of these open sets will do to cover K. 

 

                                                              K ⊆ 𝑓¯1𝑁
𝑖=1 Ai  

        It follows that   

                                                           F(K) ⊆ 𝐴𝑖𝑁
𝑖=1  

 

                     i.e., a finite number of the original open sets Ai will cover the sets f (K), which is therefore 

compact.  

Bolzano - Weierstrass Compact Set  

 A metric space (X,d)  is said to have Bolzano  - Weierstrass property if every infinite subset of X has a 

limit point in S . 

Example  

             Consider the metric space (X,d) , where  X = ]0,1[  and d  is the usual metric , S = X and  the infinite 

subset A  = { 1, 
1

2
 , 

1

3
 , … … … -  of S. Here 0 is the only limit point of the set A and this is not in S.  

The Minknowski Inequality  

                   The set Rn with the ep norm defined for x = (X1, X2, ………, Xn ) and                                                                                                                               

1 ≤ 𝑝  ≤ ∞  by   

|| x ||p= (| x1|p + ………. + ||xn |p |) 
1

𝑝
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And for p = ∞ by   

||x ||∞= max (|x1|, |x2| p, ……….. , |xn|p)  

   Is an n – dimensional normed vector space for every 1 ≤p ≤∞. The Euclidean case p= 2 is distinguished by 

the fact that the norm ||. ||2is derived from an inner product on Rn.  

|| x ||2=  〈𝑥, 𝑦〉 

〈x,y〉=   𝑥𝑖𝑦𝑖𝑛
𝑖=1  

The triangle inequality for the ep – norm is called Minkowski’s inequality.  

Theorem  

              If (x1, x2, ……., xn), (y1, y2, …….,yn) ∈Rn , then | 𝑋𝑖𝑌𝑖𝑛
𝑖=1 |≤( 𝑋𝑖 2𝑛

𝑖=1 )
1

2
( 𝑌𝑖2 𝑛

𝑖=1 )
1

2
 

Proof 

       Since |  xiyi|≤ |xi| |yi|, it is sufficient to prove the inequality for xi, yi ≥ 0. Furthermore, the inequality 

is obvious if either x =0 or y = 0, So we assume at least one xi and one y1 is non zero. 

  For every 𝛼, 𝛽∈R, we have 

 

0 ≤ (𝛼𝑥𝑖𝑛
𝑖=1  - 𝛽yi)² 

Expanding the square on the right-hand side and re arranging the terms, we get that  

                                         2𝛼𝛽 =  𝑥𝑖𝑦𝑖𝑛
𝑖=1 ≤𝛼² 𝑥𝑛

𝑖=1 i² + 𝛽² 𝑦𝑖𝑛
𝑖=1 ² 

      Then division of the resulting inequality by 2𝛼𝛽 proves the theorem  

       Then MInkowski inequality for p = 2 is immediate consequence of Cauchy Schwartz inequality.  
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