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ABSTRACT: 

One of the important results in the theory of finite groups is Lagrange’s theorem, which states 
that the order of any subgroup of a group must divide the order of the group. i.e., If H is a subgroup of a 
finite group of order n then according the Lagrange’s theorem O(H) divides O(G). But the converse to 
this theorem is may or may not be true that is for any number d dividing the order of a group then there 
may not be exists a subgroup of G of order d. The simplest example of this is the group A4 of even 
permutations on the set {1,2,3,4} has order 12, yet there does not exist a subgroup of order 6. The 
Norwegian mathematician Peter Ludwig Sylow discovered that the converse of Lagrange’s theorem is 
true when d is a prime power. If p is a prime number and ܲ݇ |O(G).Then G must contains a subgroup of 
order ܲ݇. Sylow also discovered important relationships among the subgroups whose order is the 
largest power of ݌ dividing O(G), such as the fact that all subgroups of that order are conjugate to each 
other. The aim of the paper is to present the Sylow theorems in easy manner and their applications.  

 
KEYWORDS : Lagrange’s theorem , Norwegian mathematician. 
 

INTRODUCTION 
1.1 Even Perfect Number: A perfect even number is an even number which is perfect .In number 
theory, a perfect number is a positive integer that is equal to the sum of its positive divisors, excluding 
the number itself. For example, 6 has divisors 1, 2 and 3 (excluding itself), and 1 + 2 + 3 = 6, so 6 is a 
even perfect number. Even perfect number is always of type  -12 2 1p pN     . 

   3-1 3 2 5-1 5 4  28 2 2 1 2 .7,  496 2 2 1 2 .31For Example        and  7-1 7 68128 2 2 1 2 .127    all are 
even perfect number. 
 
1.2 Group: A non empty set G equipped with an 
operation ‘*’ is said to be group if it satisfies the 
following postulates. 



 
 
SIMPLICITY OF SIMPLE GROUPS WITH SYLOW’S THEOREMS                                                                           vOlUme - 8 | issUe - 4 | JanUaRy - 2019   

________________________________________________________________________________________ 
_ 

___________________________________________________________________________________________ 
Journal for all Subjects : www.lbp.world 

2 
 
 
 

1. Closure Property:  . .      , * .i e a b G a b G     

2.  Associativity :   . .   *( * ) ( * )*      , , .i e a b c a b c a b c G    

3. Existence of identity element: If a  G the there exists an element e  G such that 

                                            * *      .e a a a e a G     

4. Existence of  inverse element: If a  G the there exists an element a-1 G such that 

                                           1 1* *      .a a e a a a G      

1.3 Finite and Infinte Group:  A group G is said to be finite group if the number of distinct elements in 
group is finite otherwise G is an infinite group. 

1.4 Order of Group:  The number of elements in a finite group is called the order of the group and is 
denoted by ( )O G . An infinite group is said to be of infinite order. 

1.5 Order of an element in a Group:  Let G be a group and a  G. If there exists a least positive inter n 
such that na e  

Then n is called the order of a and written as O(a)=n. If no such positive integer exists, then a is said to 
be of infinite order. 

1.6 Subgroup: A non empty subset H of a group G is called a subgroup of G if H itself is a group w.r.t. 
the same composition as defined in G. 

1.7 Cosets: Let H be a subgroup of a group G and a  G. The set 

           {  :    }aH ah h H   is called a left coset of H in G. 
         {  :    }Ha ha h H   is called a right coset of H in G. 
 
1.8 Normal Subgroup: A subgroup H of a group G is said to be normal subgroup of G if   
                                                                      .xH Hx x G    
1.9 Cauchy’s Theorem: If G is a finite group and p is a prime number. If ܲ|O(G)  then there exists an 
element a in G such that O(a)= p. 
 Remarks-    

1. If G is a finite group and ܲ|O(G), p is a prime number, then G has a subgroup of order p. 
2. If G is a finite group and m|O(G), m is a positive integer, then G has a subgroup of order m. 
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1.10 Lagrange’s Theorem: If G is a finite group and H is a subgroup of G then O(H)|O(G).   
   
1.11 Normalize of a subgroup a group: If H is subgroup of a group G then normalize N(H) of  H in  G  
is the set of all  those elements x in G that commute with H. i.e. 

                                               ( )  :  N H x G xH Hx           
1.12 Conjugate Subgroup: If H and K are any two subgroups of a group G then H is said to be 
conjugate to K if there exists -1     g G such that gHg K  . 

1.13 Simple Group: A group having no proper normal subgroups is called a simple group.
 

1.14 p- Groups: A group G is said to be p- group (p being a prime number) if the order of every 
elements of G is some power of p. In other words we can say that a finite group G is a p- group iff  
      ,      .nO G p p being a prime number  

Example: The Quaterian group G of order 8 is a p- group. 

1.15 Theorem: The order of a subgroup of a finite group divides the order of the group. 

Proof: Let G be a finite group of order n and H be a subgroup of order m   
              . .,    i e O G n and O H m    then we shall prove that m|n  . For, 
          Since O(H)= m. Therefore there exist m members in H. Let 1 2, ,..., mh h h are the m members 
          of H. Let a � G then  1 2,  ,..., mHa h a h a h a is a right coset of H having m distinct  
members, since i j i jh a h a h h   . 

Therefore each right coset of H in G has m distinct members. Any two distinct right cosets of H in G are 
disjoint that is they have no element in common. Since G is a finite group, therefore the number of 
distinct right cosets of H in G will be finite, say, equal to k. The union of these k distinct right cosets of 
H in G is equal to G. Thus if 1 2, ,  ...,  kHa Ha Ha  are the k distinct right cosets of H in G then 

                             

       
 

1 2

1 2

           ...
     ...

    ...  
    
    

k

k

G Ha Ha Ha
O G O Ha O Ha O Ha

n m m m k times
n mk
m n

   

    

    

 


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SYLOW’S THEOREM 
2.1 SYLOW’S FIRST THEOREM: If G be a group and p be a prime number such that ܲm |O(G)  

Then G has a subgroup of order ܲm. 
Proof: Let G be a group of order n and p be a prime number ܲm |O(G)  then we shall prove that G has a 

subgroup of order ܲm. For, We shall prove this theorem by induction on n. 

 If n=1 then G={e} has a subgroup of order ܲ0=1 i.e.,{e} itself. Thus the result is true for n=1. 
   Now, let us suppose that the result is true for all groups of order less than n. It means if L is any group 
of order less than n and if ܲk |O(L)  then L has a subgroup of order ܲk. 
    Since ܲm |O(G)  then there arise two cases 

Case 1:  Let ܲm divide the order of a proper subgroup H of G i.e., ܲm |O(H)  ,where  H< G. Therefore 

by induction hypothesis H has a subgroup of order ܲm. But H< G, therefore G has a subgroup of order 

ܲm. 

Case 2:  Let ܲm         O(H)   for all proper subgroup of H of G. The class equation of G is  

                                 
 

       
a Z

O G
O G O Z

O N a

 
  

    

Or,                       

     
 ( )

                                                  ...(1) 

                                           
    

N a G

O G
O G O Z

O N a

where the summation runs over one lelment a in each conjugate
class containing more than



 
  



  .    two element
 

   

 

    
                        ( )

( )                     ( )
( )

( )                         
( )

m

m

m

we have
p O G

O Gp O N a
O N a

O Gp
O N a





 

                                                                    < Since  ܲm         O[N(a)]  as N(a)< G and N(a)  G > 
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 

   

 

( )

( ) ( )

( )

( )                   
( )

( ) ( )                                              ,   0   
( ) ( )

( )                ( )
( )

m

N a G

l

N a G N a G

N a G

O Gp
O N a

O G O Gp Since p where l m
O N a O N a

O Gp O G
O N a



 





       
  

 
   

 



 

              | ( )

                ( )

Since p O G

p O Z

 

Since ܲ |O(Z)  . Therefore by Cauchy’s theorem for abelian groups there exists some integer ae  Z 

such that ap=e. Consequently 2 3{ , , ,..., }pK a a a a a e   is a subgroup of Z and O(Z)=p. 

Now,  ( )         ( )
( )

G O GK Z K is a normal subgroup of G and so O O G
K O K

     
 

 

-1

-1 -1

-1

       ,       ( )   ( ).

 .    ,     ,  ,  ,    .

. .,        

m m

m m

m

GFurther p O Since O K p and p O G
K

G G HSince p O Therfore by induction hypothesis has a subgroup say of order p
K K K

Hi e O p
K

   
 

 
 
 

   
 

 

-1

     ( ) ( )

                     .
                     

    ( )        
       .

m

m

m

HThus O H O O K
K

p p
p

Hence O H p and H G
This completes the induction and theorem is proved

   
 





 
 

2.2 Sylow p- subgroup: Let H is any subgroup of a finite group G such that O(H)= ܲm , p being a 

prime number then H is called Sylow p-subgroup or p-sylow subgroup or p-SSG if ܲm |O(G)        and  

ܲm+ 1    O(G) . 
 
2.3 SYLOW’S SECOND THEOREM: Any two sylow p-subgroups of a finite group G are conjugate 
in G. 
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2.4 SYLOW’S THIRD THEOREM:  The number of p-sylow subgroups of a finite group G is always 
congruent to 1 modulo p and divides order of group. i.e., If there are  np  , P-SSG then   

 
 

                 1 mod      ( )

               1        ( )

                1       ( ) ,           0,  1,  2,...

                1       ( )

  

p p

p p

p p

p p

n p and n O G

p n and n O G

n pt and n O G where t

n pt and n O G

Thus total number



 

   

  

  -  1    1 ( ).of p SSG pt and pt O G  

 

  
2.5  EXAMPLE:  If G be a finite group of order 144  
                              4 2. .        ( ) 144 2 .3i e O G      

Since  24 |144 and   24+1       144   4   2 -    2 16G has a SSG of order   

              

4 2

2 4

        2 - 1 2 ,  0,1,2,...   1 2 2 .3

        2 - 1 2 ,  0,1, 2,...    1 2 3 ,     gcd(1 2 ,  2 ) 1

        2 - 1 2 ,  0,1, 2,...    1 2 9   
      

and number of SSG t t and t

number of SSG t t and t Since t

number of SSG t t and t
numb

   

      

    

   2 - 1,3,9,   0,1,4.er of SSG t 

 

Again, 

            Since   32 |144 and   32+1       144   2   3-    3 9G has a SSG of order   

                    

            

4 2

4 2

             3- 1 3 ,  0,1,2,...   1 3 2 .3

             3 - 1 3 ,  0,1, 2,...    1 3 2 ,   gcd(1 3 ,  3 ) 1

            3- 1 3 ,   0,1, 2,...   1 3 16

and number of SSG t t and t

number of SSG t t and t Since t

number of SSG t t and t

   

      

    

            3- 1, 4,16.     0,1,5.number of SSG t  

 

 
2.6 Theorem: A sylow p-subgroup of a finite group is unique if and only if it is normal.     Proof: Let H 
is unique sylow p-subgroup of a finite group G such that O((H)= ܲm, where ܲm |O(G)    and  ܲm+ 1      

O(G) .  Let x  G be any element of G then xHx-1 is a subgroup of G and 

O(xHx-1)=O(H)= ܲm O(xHx-1)= ܲm, where ܲm |O(G)  and  ܲm+ 1     O(G ). Thus xHx-1 is a sylow p-

subgroup of G for all x  G. Since H is the only sylow p-subgroup of G. Therefore H= xHx-1  x  G. 
Hence H is a normal subgroup of G. 
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Conversely let H is normal subgroup of G. Therefore   
                                                           H= xHx-1  x  G          …(1) 
Let K is any other sylow p-subgroup of G. Then by the second sylow theorem  H and K are conjugate in 
G. i.e.,                           K= xHx-1 for some x  G          …(2) 
From equation (1) and (2) we have     H=K. Hence H is a unique sylow p-subgroup of G. 
                               
APPLICATIONS OF SYLOW’S THEOREM 
3.1  A group of order even perfect number is not a simple group. 
Since order of group is an even perfect number .Therefore, let  -1( ) 2 2 1p pO G   , where p is a prime 
number. By First sylow theorem G has sylow (2p-1)- subgroup and sylow 2(p-1) )- subgroup. 

 2 1
    2 1    p

pThe number n of SSG is given by


   

              
 

2 1 2 1

-1
2 1

              1 (2 -1) ,   0,1, 2,...,       ( )

       1 (2 -1) ,   0,1, 2,...,       1 (2 -1) 2 2 1

p p

p

p

p p p p

n k k and n O G

n k k and k
 



  

     
 

                

-1
2 1

2 1

2 1

       1 (2 -1) ,   0,1,2,...,       1 (2 -1) 2

       1,   0.

       1.

p

p

p

p p pn k k and k

n k
n







    

  

 
 

 
Thus, there exists exactly one 2 1p   -SSG say H, where O(H)= 2 1p  . Therefore H is a normal 
subgroup of order 2 1p  . Since group G has a proper normal subgroup. Hence G is not simple. 
 
3.1.1 Examples: A group of order 28 is not simple. 

  

2 3 1 3

7

7 7

7

 ( ) 28 2 .7 2 (2 1)
       2 -     7 - .  
    7    

              1 7 ,   0,1, 2,...,        ( )

        1 7

Here O G
By First sylow theorem G has sylow subgroup and sylow subgroup
The number n of SSG is given by

n k k and n O G

n k

   



  

   2

2
7

7

7

,   0,1, 2,...,       1 7 2 .7      

        1 7 ,   0,1, 2,...,       1 7 2

        1,   0.
        1.               

,      7 - ,   ,   ( )  7. 

k and k

n k k and k

n k
n

Thus there exists exactly one SSG say H where O H Therefor

 

    

  
 

       
  7.           7.     .

e H is a normal subgroup of
order Since group G has a proper normal subgroup of order Hence G is not simple
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3.1.2 Examples: 

                                  
 
 

5-1 5 4

7-1 7 6

    496 2 2 1 2 .31    

                            8128 2 2 1 2 .127   .

The groups of order

and are not simple

  

  
 

 
3.2 A group G of order p.q (p and q are distinct primes ) such that p  q and  p does is divide (q-1)  
is not a simple group. 

 ( ) .
       -     - .  
       

              1 ,   0,1,2,...,        ( )

        1 ,   0,1, 2,...,

p

p p

p

Here O G p q
By First sylow theorem G has sylow p subgroup and sylow q subgroup
The number n of p SSG is given by

n pk k and n O G

n pk k





  

          1 .      

        1 ,   0,1, 2,...,       1
         1            

p

p p

and pk p q

n pk k and pk q
either n or n q



    

  

 

 

              
                 1  
                  1 
                 1   ,     .

     1.  
,      - ,   ,   

p

p

if n q
pk q

pk q
p q which is a contradiction

Therefore we have n
Thus there exists exactly one p SSG say H where



  
  

 



( )  .       
   . 

O H p Therefore H is a normal subgroup of
order p



       

              1 ,   0,1, 2,...,        ( )

        1 ,   0,1, 2,...,       1 .      

        1 ,   0,1, 2,...,       1
        1 ,   

q

q q

q

q

q

The number n of q SSG is given by

n qk k and n O G

n qk k and qk p q

n qk k and qk p
n



  

    

    

     sin       

     1.  
,      - ,   ,   ( )  .       
 . 
           

q

ce q p
Therefore we have n
Thus there exists exactly one q SSG say K where O K q Therefore K is a normal subgroup of
order q
Since G have two proper normal subgroups H and K of







    .    
.

order p and q respectively Hence G is not
simple

 

 
 
3.2.1 Examples: A group of order 33 is not simple. 
 

   ( ) 33 3.11    3,  5     3   (11-1) 10.
    .

Here O G where are distinct primes and does not
Therefore G is not simple

  
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3.3 A group G of order 2p (p being a prime ) is not a simple group. 
 ( ) 2

       -   .        

              1 ,   0,1,2,...,        ( )

        1 ,   0,1,2,...,       1 2      

  

p

p p

p

Here O G p
By First sylow theorem G has sylow p subgroup The number n of p SSG is given by

n pk k and n O G

n pk k and pk p




  

    

      1 ,   0,1,2,...,       1 2

        1     

     1.  

,      - ,   ,   ( )  .       
   .  

p

p

p

n pk k and pk
n

Therefore we have n
Thus there exists exactly one p SSG say H where O H p Therefore H is a normal subgroup of
order p Since

    

 




          .     .group G has a proper normal subgroup H of order p Hence G is not simple

  

 
3.4 A group G of order pqr and p  q  r (p, q and r are primes ) is not a simple group. 

 ( )
       -  ,  -     -   . 
       

              1 ,   0,1,2,...,        ( )

        

p

p p

p

Here O G pqr
By First sylow theorem G has sylow p subgroup sylow q subgroup and sylow p subgroup
The number n of p SSG is given by

n pk k and n O G

n





  

 1 ,   0,1,2,...,       1      

        1 ,   0,1,2,...,       1
        1,  ,  ,       

       

              1 ,   0,1,2,...,        ( )

p

p

q

q q

pk k and pk pqr

n pk k and pk qr
n q r qr

The number n of q SSG is given by

n qk k and n O G

  

    

 



  

        1 ,   0,1,2,...,       1      

        1 ,   0,1,2,...,       1
        1,  ,  ,     
        1,  ,        sin    .

       
    

q

q

q

q

r

n qk k and qk pqr

n qk k and qk pr
n r pr p
n r pr ce p q

The number n of r SSG is given by

    

    

 

  



          1 ,   0,1,2,...,        ( )

        1 ,   0,1,2,...,       1      

        1 ,   0,1,2,...,       1
        1,  ,  ,     
        1,          sin

r r

r

r

r

r

n rk k and n O G

n rk k and rk pqr

n rk k and rk pq
n p q pq
n pq

  

    

    

 

        .
      

                    ,  ,  
                    ,  

             
 min       

                    

             

p

q

r

p

ce p q r
Let non these SSG is normal then

n q r qr
n r pr

and n pq
The imum number of SSG is given by

n q

 









       
             

,   min     
                ( -1) ( -1) ( -1)

          ( -1) ( -1) ( -1) 1
            - - - 1
            -

q

r

n r
and n pq

Now the imum number elements in G
q p r q pq r

Thus q p r q pq r pqr
pq q qr r pqr pq pqr
q q





  
   

    
  - 1 0r r  
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            ( -1) -1( -1) 0
            ( -1)( -1) 0      .      .
                                            (2-1)(3-1) 0.

   

r q q
q r which is a contradiction Since r and q are primes

For example
That our initial assumpti

 
 


         .     .

    .
on that non any SSG is not normal is wrong Therefore some SSG is normal

Hence G is not simple

 

 
3.5 Some Other Examples: 
 

Order of Group  Prime Factor Special Feature 
8 23 Prime Cubed 
12 22 · 3 A4 
18 2 · 32 Normal Sylow 3 
20 22 · 5 Normal Sylow 5 
27 33 Prime cubed 
28 22 · 7 Normal Sylow 7 
30 2 · 3 · 5 Normal Sylow 3 or 5 
42 2 · 3 · 7 Z2 → U (7) × U (3) 
44 22 · 11 Normal Sylow 11 
50 2 · 52 Normal Sylow 5 
52 22 · 13 Normal Sylow 13 
63 32 · 7 Normal Sylow 7 
68 22 · 17 Normal Sylow 17 
70 2 · 5 · 7 Normal Sylow 5 or 7 
75 3 · 52 Normal Sylow 5 
76 22 · 19 Normal Sylow 19 
78 2 · 3 · 13 Z2 → U (13) × U (13) 
92 22 · 23 Normal Sylow 23 
98 2 · 72 Normal Sylow 7 
99 32 · 11 Normal Sylow 3 or 11 
117 32 · 13 Normal Sylow 3 or 13 
153 32 · 17 Normal Sylow 3 or 17 
171 32 · 19 Normal Sylow 3 or 19 
207 32 · 23 Normal Sylow 3 or 23 
261 32 · 29 Normal Sylow 3 or 29 
279 32 · 31 Normal Sylow 3 or 31 
333 32 · 37 Normal Sylow 3 or 37 
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