

REVIEW OF RESEARCH

ISSN: 2249-894X IMPACT FACTOR : 5.7631(UIF) VOLUME - 13 | ISSUE - 5 | FEBRUARY - 2024

ANTIFUNGAL ACTIVITIES AND THEIR DIVERSITY IN MUSHROOM MYCOFLORA

Dr. Vinay Kumar Singh Associate Professor, Department of Botany, K. S. Saket PG College Ayodhya Dr. Ram Manohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India.

ABSTRACT

This study summarizes published reports on the antifungal properties of mushrooms which can cause acute harm to human health and cultivation. Mushrooms are a natural resource for the treatment of infectious diseases and used as effective antibiotics for biological control as well. Basidiomycota mushrooms are a good source for the treatment of several ailments including antifungal, antibacterial, antioxidant, antitumor etc. The antifungal potential was screened against pathogenic fungi viz., Aspergillus niger, Pythium sp., Alternaria brassicicola etc has been investigated. Hence, this review is focused on exploring

the antifungal properties of the mushroom and would be helpful to guide researchers to undertake further investigations in this direction.

KEYWORDS: Antifungal, Mushroom, Basidiomycota, Biological, Cultivation.

INTRODUCTION

Fungal invasion causes serious reduction in yield and quality of agricultural crops, which brings about enormous economic losses, great loss in humans and other organisms (Sultan et al., 2020). Research on Antifungal activity assay of mushrooms may provide ways to boost their resistance against pathogens. Since ancient times, mushrooms have been a component of the human diet, and an important therapeutic due to their medicinal value. The *Basidiomycete* fungus, is a good source of new antifungals viz., Strobilurin A and Oudemansin A (Ma et al., 2010). Mushrooms as a wide spectrum of biological resource, possess chemically diverse secondary metabolites and are well known to people all over the Asian countries in the twentieth century (Sridhar *et al.*,2011). The estimation of the existence of different species of mushrooms in the planet is about 1,40,000, however only about 10% is known (Balakumar *et al.*,2011). It has been reported that volatile compounds from fungi have been studied as biological control agents that inhibit the growth of phytopathogenic fungi (Oka et al., 2015); they possess the spore bearing fruiting body and a fleshy fungus of edible mushroom. The commonly available edible mushroom, namely Agaricus bisporus (button mushroom) is revealed to possess antimicrobial, antioxidant and anticancer activity (Nojedehi et al., 2017). The fungi constitute an important source for some compounds including enzymes and antibiotics (Nojedehi et al., 2017), secrete antifungal compounds to survive against competing or pathogenic organisms (Romi Singh 2017). Mushrooms are immensely rich in bioactive compounds namely terpenoids, proteins, polysaccharides, peptide, phenolics, flavonoids, alkaloid, protein, sterols are found in secondary metabolites and various cellular components which have been isolated and identified from the fruiting bodies (Gebreyohannes *et al.*, 2019). Medicinal mushrooms must secrete a great amount of secondary metabolites that are revealed to possess wide beneficial properties such as anti-inflammatory, antitumoral, antifungal, antiviral, antibacterial, and anti-yeast activities (Owaid *et al.*, 2017). The mycelium and fruiting bodies of mushroom shows health promoting values such as immunostimulatory, antioxidative and antibacterial properties (Gebreyohannes *et al.*, 2019); antitumor, antiviral, antimicrobial with medicinal effects (Landi *et al.*, 2022).

Antifungal Activity of Mushroom Species

Table: Antifungal Activity of certain mushrooms against target fungal specie.

Mushroom	Target fungal species	Results	References
Lactarius deliciosus	Monilinia fructicola	The extract of <i>Lactarius deliciosus</i> (L.) inhibited fungal growth and phytopathogenic induced mycelial development at a concentration of 1.25 mg/ml.	Volcao <i>et al.,</i> 2022
Hypsizygus marmoreus	Alternaria. brassicicola	All of the stereoisomers with high stereoselectivity exhibited antifungal activity against the <i>Alternaria brassicicola</i> .	Anh <i>et al.,</i> 2022
Mushroom alcohol	Botrytis cinerea	Mushroom alcohol vapor showed an inhibitory effect on mycelial growth of <i>B. cinerea</i> at 3, 6 or 12 μ L L ⁻¹ .	Wang et al., 2022
Pleurotus eryngii	Trichophyton rubrum	The fruiting bodies extract of <i>Pleurotus</i> <i>eryngii</i> affected the growth of the dermatophytic fungus. The results showed that ethanolic extract was more effective than the aqueous extract.	Dawood <i>et</i> <i>al.</i> , 2021
Oyster mushroom (Pleurotus ostreatus)	Penicillium digitatum	The results revealed that the treatment with ORWP-coated mushrooms was effective in maintaining the sensory quality of oyster mushrooms. The results showed the minimum inhibitory concentration (MIC) was 0.25 g L-1 and the minimum fungicidal concentration (MFC) was 1.00 g L-1.	Liu <i>et al.,</i> 2020
Agaricus bisporus	Aspergillus flavus	The ethanolic extracts computed in vitro showed maximum effect against <i>Aspergillus flavus</i> at concentration 16 mg/ml, with growth rate reaching 2.5 cm.	Sultan <i>et al.,</i> 2020

<i>Rhizopogon</i> species	Penicillium chrysogenum, Aspe rgillus niger and Alternari a alternata	The spore germination inhibition was observed in <i>Penicillium</i> <i>chrysogenum</i> (87.80%) with zone of inhibition (27.00 \pm 1.00), followed by <i>Aspergillus niger</i> (71.08%) with zone of inhibition (22.67 \pm 2.08) and <i>Alternaria</i> <i>alternata</i> (55.10%) with zone of inhibition (18.57 \pm 1.52) respectively, at highest concentrations (200 mg/ml).	Talie <i>et al.,</i> 2020
Inonotus hispidus (Hymenochaetace ae)	Aspergillus niger, Aspergillus flavus.	The results revealed that higher inhibition percentage against <i>Aspergillus niger</i> was 12.2% whereas <i>Aspergillus flavus</i> showed the lower percentage was 6.3%.	Jaloot <i>et al.,</i> 2020
Trametes spp., Trametes, and Microporus spp. Agrocybe aegerita	Candida albicans and Candida parapsilosis Trichoderma	The results showed the growth inhibition against <i>C. albicans</i> and <i>C. parapsilosis</i> at MIC value of (1.50 ± 0.87) mg/mL. The results explored the antifungal activity	Gebreyohan nes <i>et al.,</i> 2019 Ragucci <i>et</i>
Agrocybe uegernu	asperellum	of both isoforms against <i>T. asperellum</i> .	al.,2019
Pleurotus sajor- caju	Candida albicans	The average particle size (11.68nm) of PSC-AgNPs inhibited the growth of <i>C. albicans</i> with MIC and MFC values were 250 mg/L and 500 mg/L, respectively.	Musa <i>et al.,</i> 2018
Trametes Gibbosa, Agaricus Bisporus	Candida albicans, Aspergillus niger, Fusarium oxysporum, Ustilago maydis, Microsporum gypseum and Malassezia furfur	Mushroom extracts (F=1.44, P=0.24) showed significant difference in growth inhibition of the fungi. The fungal extracts (F=2.88, P=0.025) exhibited significant difference in growth inhibition of the fungal pathogens and also in the inhibition of the fungal pathogens by mushroom and fungal extracts (0.0022).	Waithaka <i>et</i> al., 2017
Agaricus bisporus	Aspergillus flavus, Aspergillus terreus	The fabricated AuNPs resulted in high fungicidal effect against <i>Aspergillus flavus</i> as compared to the <i>Aspergillus terreus</i> .	Nojedehi <i>et</i> al., 2017
Termitomyces	Aspergillus flavus, Aspergillus niger, Candida albicans, Penicillium notatum, Mucor racemosus	The methanolic extract of <i>Termitomyces</i> was computed against <i>Penicillium notatum</i> and showed highest antifungal inhibitory activity of 4.95mm.	Romi Singh 2017

ANTIFUNGAL ACTIVITIES AND THEIR DIVERSITY IN MUSHROOM MYCOFLORA

Pleurotus ostreatus (grey), P. ostreatus var. florida, P. cornucopiae var. citrinopileatus and	Trichoderma harzianum, Verticillium sp. and Pythium sp.	The best inhibition zone was 16 mm against <i>T. harzianum</i> by <i>P. ostreatus</i> , The highest inhibition activity of 55.56 % was perceived by <i>P.salmoneo</i> <i>stramineus</i> against <i>Verticillium</i> species. The highest inhibition of 55 and 50% by <i>P.</i>	Owaid <i>et al.,</i> 2017
P. salmoneo stramineus		<i>ostreatus</i> and <i>P. salmoneo</i> <i>stramineus</i> culture filtrates in liquid media against <i>T. harzianum</i> and <i>Verticillium</i> sp.	
Sparassis latifolia	Candida albicans, C. catenulate, C. glabrata, C. rugosa, and Fusarium solani, Fusarium oxysporum	Authors suggested that the potential of the mushroom lectin isolated from <i>S. latifolia</i> , a valuable source of bioactive constituents could be used as a pharmaceutical agent.	Chandrasek aran <i>et al.,</i> 2016
Agaricus bisporus	Neurospora sitophila	In vitro assay of antifungal activity indicated that a purified antifungal substance strongly inhibited the mycelia growth and spore germination of <i>N.</i> <i>sitophila.</i>	Liu <i>et</i> <i>al.</i> ,2015
Phellinus gilvus, Phellinus rimosus and Phellinus badius	Alternaria alternata	<i>P. gilvus</i> reported the higher inhibition against the growth of <i>A. alternata</i> .	Ayala- Zavala <i>et al.,</i> 2012
Schizophyllum commune	Saccharomyces pombe, Candida albicans and Candida parapsilosis.	The fungal species were found to be sensitive to the antibiotic nystatin giving very active inhibition ranging from (19 ± 1) mm to 28 ± 1 mm).	Mirfat, <i>et al.</i> , 2014
Hypsizygus marmoreus	Alternaria brassicicola, Alternaria alternata Bipolaris sorokiniana, Botrytis cinerea, Cladosporium cucumerinum, Colletotrichum orbiculare, Corynespora cassiicola, Podosphaera xanthii	The conidial and mycelial growth of <i>Alternaria brassicicola</i> were significantly inhibited by 60 and 100%. The volatile compounds showed antifungal activity against <i>A. brassicicola</i> in comparison to others.	0ka <i>et al.,</i> 2015.

Lactarius densifolius, Lactarius sp, Lactarius gymnocarpoides, Russula kivuensis, Amanita muscaria and Amanita phalloides	Candida albicans and Cryptococcus neoformans	<i>Amanita muscaria</i> showed high activity against <i>Candida albicans</i> with MIC of 0.78 mg/mL.The <i>A. muscaria</i> chloroform extract showed moderate activity against both <i>C. albicans</i> and <i>C. neoformans</i> (MIC = 1.56 mg/mL).	Chelela <i>et</i> <i>al.,</i> 2014
Pleurotus ostreatus (oyster mushroom) and Agaricus bisporus (button mushroom)	Aspergillus flavus, Aspergillus fumigatus, Penicillium chrysogenum, Sporotrichum carnis, Humicola grisea and Thermoascus aurantiacus	Pleurotus ostreatus exhibited maximum inhibition against Penicillium chrysogenum.The extract of Agaricus bisporus showed good inhibition against Humicola grisea.	Kumar <i>et al.,</i> 2014
Basidiomycete macrofungi- Pleurotus sapidus and Pleurotus flabellatus	Candida albicans, Candida guilliermondii, Candida krusei	The results showed a zone of inhibition of 29 and 33 mm against <i>Candida albicans</i> , <i>Candida guilliermondii</i> . The Ketoconazole exhibited zones of inhibition of 28 and 32 mm against Candida albicans. The Ketoconazole and Fluconazole showed the zone of inhibition of 28 and 35 mm against <i>Candida guilliermondii</i> .	Shahi <i>et al.,</i> 2012

CONCLUSION

The present review focuses on antifungal effects of mushrooms; reports of various extracts of mushrooms were tested against different species of *Candida, Aspergillus, Fusarium, Penicillium, Alternaria* while isolated compounds obtained from mushrooms might be more useful for protecting crops and could be used as potential therapeutic agents. Synthesized AuNPs and essential oils had also suitable fungicidal effects against phytopathogens. The mycelium and fruiting bodies of mushrooms show health promoting values such as immunostimulatory, antioxidative and antibacterial properties, antitumor, antiviral, antimicrobial with medicinal effects. Results demonstrated that mushrooms produce antimicrobial metabolites could be an effective alternative for reducing fungal diseases, used as novel biological control agents and proved to be a promising antifungal agent.

REFERENCES

- 1. Alves MJ, Ferreira ICFR, Dias J, Teixeira V, Martins A, Pintado M (2013). A Review on Antifungal Activity of Mushroom (Basidiomycetes) Extracts and Isolated Compounds. *Curr. Top. In Med. Chem.*;13(21).
- 2. Anh NTN, Miyaji D, Oka KO, Saito T, Ishihara A, Yajima A (2022). Synthesis and antifungal activity of the proposed structure of a volatile compound isolated from the edible mushroom *Hypsizygus marmoreus*. *J. Pes.Sci.*;47(1).
- 3. Ayala-Zavala JF, Silva-Espinoza BA,Cruz-Valenzuela MR, Villegas-Ochoa MA, Esqueda M, González-Aguilar GA, Alderón-López Y(2012). Antioxidant and antifungal potential of methanol extracts of Phellinus spp. from Sonora, Mexico. *Rev Iberoam Micol*.;29(3).
- 4. Balakumar R, Sivaprakasam E, Kavitha D, Sridhar S, Kumar JS (2011). Antibacterial and antifungal activity of fruit bodies of Phellinus mushroom extract. *Int. Jour. Biosci.*1(3).

- 5. Bhat MY,Talie MD, Wani AH, Lone BA (2020). Chemical composition and antifungal activity of essential oil of rhizopogon species against fungal rot of apple. *J. App. Biol. Sci.*;14(3).
- 6. Chandrasekaran G,Lee YC,Park H,Wu Y, Shin HJ(2016). Antibacterial and Antifungal Activities of Lectin Extracted from Fruiting Bodies of the Korean Cauliflower Medicinal Mushroom, Sparassis latifolia (Agaricomycetes). *Int. J.Med. Mush.*; 18(4).
- 7. Chelela BL, Chacha M, Matemu A (2014). Antibacterial and antifungal activities of selected wild mushrooms from Southern Highlands of Tanzania. *Amer. J. Res. Comm.*; 2(9).
- 8. Dawood SM, Abdulrazzaq AK, Shnawa KT, Hanawi MJ (2021). In Vitro Antifungal Activity of *Pleurotuseryngii* against *Trichophytonrubrum*. *J. For.Med. Tox*.;15(4).
- 9. Fr. Mirfat AHS, Noorlidah A, Vikineswary S (2014). Antimicrobial activities of split gill mushroom Schizophyllum commune. *Amer.J.Res.Comm.*;2(7).
- Gebreyohannes G, Nyerere A, Bii C,Sbhatu DB(2019). Determination of Antimicrobial Activity of Extracts of Indigenous Wild Mushrooms against Pathogenic Organisms. *Evi. Bas. Comple. Alt. Med.*; 6212673.
- 11. Jaloot AS, Owaid MN, Naeem GA, Farraj R (2020). Mycosynthesizing and characterizing silver nanoparticles from the mushroom *Inonotus hispidus (Hymenochaetaceae)*, and their antibacterial and antifungal activities. *Env. Nano. Mon. Manag.*; S 2215-1532.
- 12. Kumar V and Yadav U (2014). Screening of antifungal activity of pleurotus ostreatus and agaricus bisporus. *Biolife*: 2(3).
- 13. Li G, Wang Y, Zhang Z, Chen Y, Tian S (2022). Mushroom alcohol controls gray mold caused by *Botrytis cinerea* in harvested fruit via activating the genes involved in jasmonic acid signaling pathway. *PostHarv.Bio.Tech.*;186(111843).
- 14. Liu C, Sheng J, Chen L, Zheng Y, Lee DYW, Yang Y, Xu M, Shen L (2015). Biocontrol activity of Bacillus subtilis isolated from Agaricus bisporus mushroom compost against pathogenic fungi. *J. Agric. Food Chem.*;63, 26, 6009–6018.
- 15. Liua Q, Konga W, Hua S, Kanga Y, Zhanga Y, Ngb TB (2020). Effects of Oudemansiella radicata polysaccharide on postharvest quality of oyster mushroom *(Pleurotus ostreatus)* and its antifungal activity against *Penicillium digitatum*. *PostHarv.Bio.Tech.*;166(111201).
- 16. Ma BJ, Wu TT, Ruan Y, Shen JW, Zhou H, Yu H, Zhao X (2010). Antibacterial and antifungal activity of scabronine G and H in vitro. *Myco. Soc. China.*; 1(3).
- 17. Musa SF,Yeat TS, Kamal LZM,Tabana YM, Ahmed MA, Ouweini AE, vuangao L, Keong LC, Sandai D(2018).*Pleurotus sajor-caju* can be used to synthesize silver nanoparticles with anti-fungal activity against *Candida albicans*. doi: 10.1002/jsfa.8573
- 18. Nedelkoska DN, Pančevska NA, Amedi H, Veleska D, Ivanova E, Karadelev M, Kung ulovskID(2013). Screening of antibacterial and antifungal activities of selected macedonian wild mushrooms. *Jour. Nat. Sci.*; 124.
- 19. Nojedehi ME, Malmiri HJ, Shahrouzi JR (2017). Hydrothermal green synthesis of gold nanoparticles using mushroom (*Agaricus bisporus*) extract: physico-chemical characteristics and antifungal activity studies. *Green Process Synth*; aop.
- 20. Oka K, Ishihara A, Sakaguchi N, Nishino S, Parada RY, Nakagiri A, Otan H (2015). Antifungal Activity of Volatile Compounds Produced by an Edible Mushroom *Hypsizygus marmoreus* against Phytopathogenic Fungi. *J Phytopathol*.;163,987–996.
- 21. Owaid MN, AL Saeedi SSS, Abed IA, Shahbazi P, Sabaratnam V (2017). Antifungal Activities of Some Pleurotus Species (Higher Basidiomycetes). *Plant Sci. Microbio.*;14(3).
- 22. Owaid MN, Al-Saeedi SSS, Al-Assaffii I.A.A. (2017). Antifungal activity of cultivated oyster mushrooms on various agro-wastes. *Summa Phytopathologica*; 43(1).
- 23. Ragucci S, Landi N, Russo R, Valletta M, Citores L, Iglesias R, Pedone PV,Pizzo E, Maro AD(2019). Effect of an additional N -terminal methionyl residue on enzymatic and antifungal activities of Ageritin purified from *Agrocybe aegerita* fruiting bodies. *Int.J. Biol. Macromol.*; S0141-8130.
- 24. Romi Singh (2017). Antifungal activity of *termitomyces*. Int. J. Adv. Res. 5(7).

- 25. Shahi, S. K, Sharma, P. K, Kumar, S. and Sharma, P. K. (2012). Evaluation of antifungal activity of extracts of wild fruiting bodies and cultured Basidiomycete macrofungi- *Pleurotus sapidus* and *Pleurotus flabellatus* on several azole-resistant Candida spp. *Int.J. Microb.Res.Tech.*;1(1).
- 26. Sultan SM, Tarjuman JK, Aldory ME (2020). The antifungal activity of aqueous and alcoholic extract of mushroom *(Agaricus bisporus)* against *Aspergillus flavus*. IMDC-SDSP;28-30.
- 27. Volcao LM, Halicki PCB, Ribeiro AC, Ramos DF, Furlong EB, Andreazza R (2022). Mushroom extract of *Lactarius deliciosus* (L.) Sf. Gray as biopesticide: Antifungal activity and toxicological analysis. *J.Tox.Env.Hea.* ;85(2).
- 28. Waithaka PN, Gathuru EM, Githaiga BM and Onkoba KM (2017). Antimicrobial Activity of Mushroom *(Agaricus Bisporus)* and Fungal *(Trametes Gibbosa)* Extracts from Mushrooms and Fungi. *J. Bio. Sci.*; 6(3:19).